8.已知(1-2x)2016=a0+a1(x-2)+a2(x-2)2+…+a2015(x-2)2015+a2016(x-2)2016(x∈R),則a1-2a2+3a3-4a4+…+2015a2015-2016a2016=2016.

分析 對(duì)所給的等式兩邊分別對(duì)x求導(dǎo)數(shù),再令x=1,可得要求式子的值.

解答 解:已知(1-2x)2016=a0+a1(x-2)+a2(x-2)2+…+a2015(x-2)2015+a2016(x-2)2016(x∈R),
兩邊分別對(duì)x求導(dǎo)可得2016(2x-1)2015=a1 +2a2(x-2)+…+2015a2015(x-2)2014+2016a2016(x-2)2015(x∈R),
再令x=1,可得2016=a1-2a2+3a3-4a4+…+2015a2015 -2016a2016 ,
即a1-2a2+3a3-4a4+…+2015a2015-2016a2016=2016.
故答案為:2016.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用:求特定項(xiàng)的值,注意運(yùn)用導(dǎo)數(shù),以及賦值法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列各式正確的是( 。
A.1.70.2>0.73B.lg3.4<lg2.9
C.log0.31.8<log0.32.7D.1.72>1.73

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若b=4,c=1,A=2B,則sinA=(  )
A.$\frac{{\sqrt{55}}}{8}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(參數(shù)θ∈[0,2π)),則圓C的圓心坐標(biāo)為(0,2),圓心到直線l的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=xex-asinxcosx(a∈R,其中e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)若對(duì)于任意的x∈[0,$\frac{π}{2}}$],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間$({0,\frac{π}{2}})$上有兩個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知矩形ABCD的頂點(diǎn)都在半徑為R的球O的球面上,且AB=6,BC=2$\sqrt{3}$,棱錐O-ABCD的體積為8$\sqrt{3}$,則R=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=(x2-3x+3)ex,其中e是自然對(duì)數(shù)的底數(shù).
(1)若x∈[-2,a],-2<a<1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)a>-2,求證:f(a)>$\frac{13}{e^2}$;
(3)設(shè)h(x)=f(x)+(x-2)ex,x∈(1,+∞),是否存區(qū)間[m,n]⊆(1,+∞),使得x∈[m,n]時(shí),y=h(x)的值域也是[m,n]?若存在,請(qǐng)求出一個(gè)這樣的區(qū)間; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下列命題正確的序號(hào)是①②③
①命題“若a>b,則2a>2b”的否命題是真命題;
②命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是真命題;
③若p是q的充分不必要條件,則¬p是¬q的必要不充分條件;
④方程ax2+x+a=0有唯一解的充要條件是a=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)|$\overrightarrow a$|=|$\overrightarrow b$|=$\sqrt{2}$,若函數(shù)f(x)=|$\overrightarrow a$+x$\overrightarrow b$|(x∈R)的最小值為1,則$\overrightarrow a$•$\overrightarrow b$=$±\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案