已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對(duì)都有成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:(且).
(I)當(dāng)時(shí),單調(diào)遞增區(qū)間為(0,+∞).當(dāng)m>0時(shí),單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞). (Ⅱ)實(shí)數(shù)的取值范圍為.(Ⅲ)詳見(jiàn)解析.
解析試題分析:(I)應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.遵循“求導(dǎo)數(shù),令導(dǎo)數(shù)大(小)于0,解不等式,求單調(diào)區(qū)間”.
(Ⅱ)將問(wèn)題轉(zhuǎn)化成“對(duì)都有”,
通過(guò)求,得到函數(shù)在[2,2]上是增函數(shù),
求得=g(2)=2-,利用2-,及得到實(shí)數(shù)的取值范圍為.
(Ⅲ)通過(guò)構(gòu)造函數(shù),利用(I)確定的單調(diào)性得到,(當(dāng)時(shí)取“=”號(hào)),利用“錯(cuò)位相減法”求得S=
證得().
試題解析:(I) 1分
當(dāng)時(shí),在(0,+∞)單調(diào)遞增. 2分
當(dāng)m>0時(shí),由得
由得
由得> 4分
綜上所述:當(dāng)時(shí),單調(diào)遞增區(qū)間為(0,+∞).
當(dāng)m>0時(shí),單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞). 5分
(Ⅱ)若m=,,對(duì)都有成立等價(jià)于對(duì)都有 6分
由(I)知在[2,2]上的最大值= 7分
函數(shù)在[2,2]上是增函數(shù),
=g(2)=2-, 9分
由2-,得,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/7/qbkkj.png" style="vertical-align:middle;" />,∴∈
所以實(shí)數(shù)的取值范圍為. 10分
(Ⅲ)證明:令m=,則
由(I)知f(x)在(0,1)單調(diào)遞增,(1,+∞)單調(diào)遞減,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實(shí)數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn),過(guò)線(xiàn)段的中點(diǎn)作軸的垂線(xiàn)分別交、于點(diǎn)、,問(wèn)是否存在點(diǎn),使在處的切線(xiàn)與在處的切線(xiàn)平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿(mǎn)足,則稱(chēng)為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(Ⅱ)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)若x=時(shí),取得極值,求的值;
(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設(shè),當(dāng)=-1時(shí),證明在其定義域內(nèi)恒成立,并證明().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知函數(shù)為有理數(shù)且),求函數(shù)的最小值;
(2)①試用(1)的結(jié)果證明命題:設(shè)為有理數(shù)且,若時(shí),則;
②請(qǐng)將命題推廣到一般形式,并證明你的結(jié)論;
注:當(dāng)為正有理數(shù)時(shí),有求導(dǎo)公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),函數(shù),其中是自然對(duì)數(shù)的底數(shù)。
(1)判斷在R上的單調(diào)性;
(2)當(dāng)時(shí),求在上的最值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com