18.設(shè)直線y=x與曲線y=x3所圍成的封閉圖形的面積為S,某同學(xué)給出了關(guān)于S的以下五種表示:
①S=${∫}_{0}^{1}$(x-x3)dx ②S=2${∫}_{-1}^{0}$(x3-x)dx③S=${∫}_{-1}^{1}$(x-x3)dx④S=${∫}_{-1}^{0}$(x3-x)dx+${∫}_{0}^{1}$(x-x3)dx⑤${∫}_{-1}^{1}$|x-x3|dx,
其中表示正確的序號(hào)是( 。
A.①③B.④⑤C.②④⑤D.②③④⑤

分析 利用定積分的幾何意義以及與分別填寫面積的關(guān)系分別分析.

解答 解::直線y=x與曲線y=x3所圍成的封閉圖形如圖,根據(jù)圖形得到的面積為S=${∫}_{-1}^{1}|x-{x}^{3}|dx$=${2∫}_{0}^{1}(x-{x}^{3})dx$=2${∫}_{-1}^{0}({x}^{3}-x)dx$;
所以②④⑤正確;
故選:C.

點(diǎn)評(píng) 本題考查了定積分與分別填寫面積的關(guān)系;當(dāng)圖形在x軸上方時(shí),定積分與面積相等;在x軸下方時(shí),面積與定積分互為相反數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,從圓O外一點(diǎn)M做圓O的割線MAB、MCD,AB是圓O的直徑,MA=$\sqrt{2}$,MC=$\sqrt{7}$-1,CD=2.
(1)求圓O的半徑;
(2)求∠CBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知等差數(shù)列{an}中,Sn為前n項(xiàng)和,S4=6,S6=8,則S10=( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一種放射性元素的質(zhì)量按每年10%衰減,這種放射性元素的半衰期(剩留量為最初質(zhì)量的一半所需的時(shí)間叫做半衰期)是( 。┠辏ň_到0.1,已知lg2=0.3010,lg3=0.4771).
A.5.2B.6.6C.7.1D.8.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.分別求滿足下列條件的直線方程.
(Ⅰ)過點(diǎn)(0,1),且平行于l1:4x+2y-1=0的直線;
(Ⅱ)與l2:x+y+1=0垂直,且過點(diǎn)P(-1,0)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.將函數(shù)y=sinx的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移2個(gè)單位,則所得的圖象的函數(shù)解析式是$y=sin(x+\frac{π}{4})+2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n>1,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an,則$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=(  )
A.$\frac{2012}{2013}$B.$\frac{2013}{2012}$C.$\frac{2014}{2015}$D.$\frac{2014}{2013}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從自然數(shù)1~5中任取3個(gè)不同的數(shù),則這3個(gè)數(shù)的平均數(shù)大于3的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案