【題目】如圖所示的四棱錐,四邊形正方形,,,、分別、、中點(diǎn),.

⑴證明:;

求二面角余弦值.

【答案】證明見解析;.

【解析】

試題分析:做輔助線,由點(diǎn),點(diǎn).點(diǎn),又,點(diǎn);

,平面.為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出平面一個(gè)法向量,平面法向量. 圖可知,二面角鈍角二面角余弦值為.

試題解析:證明:結(jié),分別交、點(diǎn)、,連結(jié)、

點(diǎn),點(diǎn),∴.……………………2

,點(diǎn),又,,點(diǎn),

,.……………………………………4

,

.………………………………5

解:,,,

平面.……………………………………6

如圖 ,以為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,

,,………………………………7

,平面一個(gè)法向量.…………8

設(shè)平面法向量,

,…………………………9

,,,…………10

.……………………………………11

圖可知,二面角鈍角,

∴二面角余弦值為.……………………………………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2008

2009

2010

2011

2012

2013

2014

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.7

3.6

3.3

4.6

5.4

5.7

6.2

對變量ty進(jìn)行相關(guān)性檢驗(yàn),得知ty之間具有線性相關(guān)關(guān)系.

(1)求y關(guān)于t的線性回歸方程;

(2)預(yù)測該地區(qū)2017年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.

(1)求證:對于任意t∈R,方程f(x)=1必有實(shí)數(shù)根;

(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱中,,點(diǎn)的中點(diǎn),點(diǎn)在線段上.

)當(dāng)時(shí),求證;

)是否存在點(diǎn),使二面角等于60°?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場對同一種商品展開促銷活動(dòng),對購買該商品的顧客兩家商場的獎(jiǎng)勵(lì)方案如下:

甲商場:顧客轉(zhuǎn)動(dòng)如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).

乙商場:從裝有4個(gè)白球,4個(gè)紅球和4個(gè)籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個(gè)不同顏色的球,即為中獎(jiǎng).

(Ⅰ)試問:購買該商品的顧客在哪家商場中獎(jiǎng)的可能性大?說明理由;

(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀:

已知、,求的最小值.

解法如下:

當(dāng)且僅當(dāng),即時(shí)取到等號(hào),

的最小值為.

應(yīng)用上述解法,求解下列問題:

(1)已知,求的最小值;

(2)已知,求函數(shù)的最小值;

(3)已知正數(shù)、,

求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},:(1)AB;(2)AB;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過5噸時(shí),每噸為元,當(dāng)用水超過5噸時(shí),超過部分每噸4元。某月甲、乙兩戶共交水費(fèi)元,已知甲、乙兩戶該月用水量分別為噸。

(1)關(guān)于的函數(shù)。

(2)若甲、乙兩戶該月共交水費(fèi)元,分別求甲、乙兩戶該月的用水量和水費(fèi)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺(tái)儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時(shí),公司所獲得利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案