【題目】在如圖所示的四棱錐中,四邊形為正方形,,平面,且、、分別為、、的中點(diǎn),.
⑴證明:平面;
⑵若,求二面角的余弦值.
【答案】⑴證明見解析;⑵.
【解析】
試題分析:⑴做輔助線,由為中點(diǎn),為中點(diǎn).又為中點(diǎn),又,為中點(diǎn)平面;⑵由平面
,又平面.以為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量,平面的法向量為. 由圖可知,二面角為鈍角二面角的余弦值為.
試題解析:⑴證明:連結(jié),分別交、于點(diǎn)、,連結(jié)、,
∵為中點(diǎn),為中點(diǎn),∴.……………………2分
又,∴為中點(diǎn),又,,∴為中點(diǎn),
∴,∴.……………………………………4分
∵平面,平面,
∴平面.………………………………5分
⑵解:∵平面,∴,又,,
∴平面.……………………………………6分
如圖 ,以為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,
則,
則,,………………………………7分
∵平面,∴平面的一個(gè)法向量.…………8分
設(shè)平面的法向量為,
則,即,…………………………9分
令,則,,∴,…………10分
∴.……………………………………11分
由圖可知,二面角為鈍角,
∴二面角的余弦值為.……………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.
(1)求證:對于任意t∈R,方程f(x)=1必有實(shí)數(shù)根;
(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱中,,點(diǎn)為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)當(dāng)時(shí),求證;
(Ⅱ)是否存在點(diǎn),使二面角等于60°?若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動(dòng),對購買該商品的顧客兩家商場的獎(jiǎng)勵(lì)方案如下:
甲商場:顧客轉(zhuǎn)動(dòng)如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).
乙商場:從裝有4個(gè)白球,4個(gè)紅球和4個(gè)籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個(gè)不同顏色的球,即為中獎(jiǎng).
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎(jiǎng)的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當(dāng)且僅當(dāng),即時(shí)取到等號(hào),
則的最小值為.
應(yīng)用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過5噸時(shí),每噸為元,當(dāng)用水超過5噸時(shí),超過部分每噸4元。某月甲、乙兩戶共交水費(fèi)元,已知甲、乙兩戶該月用水量分別為噸。
(1)求關(guān)于的函數(shù)。
(2)若甲、乙兩戶該月共交水費(fèi)元,分別求甲、乙兩戶該月的用水量和水費(fèi)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺(tái)儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)=其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時(shí),公司所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com