如果直線l⊥平面α,①若直線m⊥l,則m∥α;②若m⊥α,則m∥l;③若m∥α,則m⊥l;④若m∥l,則m⊥α,上述判斷正確的是 ( 。
A、①②③B、②③④
C、①③④D、②④
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:在①中也有可能m?α;由直線與平面垂直的性質(zhì)定理得②③正確;由直線與平面垂直的判定定理得④正確.
解答: 解:由直線l⊥平面α,知:
①若直線m⊥l,則m∥α或m?α,故①錯(cuò)誤;
②若m⊥α,則由直線與平面垂直的性質(zhì)定理得m∥l,故②正確;
③若m∥α,則由直線與平面垂直的性質(zhì)定理得m⊥l,故③正確;
④若m∥l,則由直線與平面垂直的判定定理得m⊥α,故④正確.
故選:B.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足f(x)=elnx+x2f(1)+x,則f(1)的值為(  )
A、-2e-1B、-e-1
C、-1D、e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R,x2-2x=0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)原點(diǎn)O的直線MN與雙曲線C:
x2
a2
-
y2
b2
=1交于M、N兩點(diǎn),P是雙曲線C上異于M、N的點(diǎn),若直線PM,PN的斜率之積kPM•kPN=
5
4
,則雙曲線C的離心率e=( 。
A、
3
2
B、
9
4
C、
5
4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,若△ABC的面積為
1
8
,其外接圓直徑為4,求證:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間,下列命題中正確的是 ( 。
A、沒(méi)有公共點(diǎn)的兩條直線平行
B、與同一直線垂直的兩條直線平行
C、平行于同一直線的兩條直線平行
D、已知直線a不在平面α內(nèi),則直線a∥平面α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{bn}的通項(xiàng)公式為bn=
4(n+1)
3n-1(4n2-1)
,求證:b1+b2+…+bn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1,E、F分別是AB、AD中點(diǎn),則異面直線EF與A1C1所成的角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐V-ABC的底面是以B為直角頂點(diǎn)的等腰直角三角形,側(cè)面VAC與底面ABC垂直,已知其正視圖的面積為2
3
,則其側(cè)視圖的面積是( 。
A、
3
2
B、
3
C、2
3
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案