3.若關于x,y的不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2≤0}\\{ax-y+1≥0}\end{array}\right.$(a>0)所表示的平面區(qū)域的面積為4,則a的值為1.

分析 先畫出約束條件的可行域,根據(jù)已知條件中,表示的平面區(qū)域的面積等于4,構造關于a的方程,解方程即可得到答案.

解答 解:不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2≤0}\\{ax-y+1≥0}\end{array}\right.$(a>0)所圍成的區(qū)域如圖所示.
∵其面積為4,
∴|AC|=4,
∴C的坐標為(2,3),代入ax-y+1=0,解得a=1.
故答案為:1.

點評 平面區(qū)域的面積問題是線性規(guī)劃問題中一類重要題型,在解題時,關鍵是正確地畫出平面區(qū)域,然后結合有關面積公式求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.如圖是甲、乙兩名籃球運動員2013年賽季每場比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數(shù)之和為53.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R,a,b∈R),若函數(shù)f(x)僅在x=0處有極值,則實數(shù)a的取值范圍為( 。
A.(-$\frac{8}{3}$,$\frac{8}{3}$)B.[-$\frac{8}{3}$,$\frac{8}{3}$]C.(-∞,-$\frac{8}{3}$)∪($\frac{8}{3}$,+∞)D.[-∞,$\frac{8}{3}$]∪[$\frac{8}{3}$,+∞]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.N(100,σ2),已知P(80<ξ≤100)=0.35,若按成績分層抽樣的方式取100份試卷進行分析,則應從120分以上的試卷中抽。ā 。
A.5份B.10份C.15份D.20份

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.不等式x2+x<$\frac{a}$+$\frac{9b}{a}$對任意a,b∈(0,+∞)恒成立,則實數(shù)x的取值范圍是(  )
A.(-∞,3)∪(2,+∞)B.(-6,1)C.(-∞,-6)∪(1,+∞)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x)的圖象,當x∈[0,$\frac{π}{2}$]時,求函數(shù)g(x)的最大值與最小值,并指出取得最值時的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若關于x的方程|logax|=m(a>0且a≠1,m>0)有兩個不相等的實數(shù)根x1,x2,則x1x2與1的大小關系是(  )
A.x1x2>1B.x1x2<1C.x1x2=1D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知各項均為正數(shù)的等差數(shù)列{an}滿足:anan+1=4n2-1(n∈N*).
(1)求{an}的通項公式;
(2)設bn=$\frac{4n}{({a}_{n}{a}_{n+1})^{2}}$,證明b1+b2+…+bn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}的前n項和Sn=3n2-n+1,則該數(shù)列的通項公式為${a_n}=\left\{{\begin{array}{l}{3,}&{n=1}\\{6n+2,}&{n≥2}\end{array}}\right.$.

查看答案和解析>>

同步練習冊答案