2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)頂點(diǎn)為B(0,b),右焦點(diǎn)為F,直線BF與橢圓的另一個(gè)交點(diǎn)為M,且|$\overrightarrow{BF}$|=2|$\overrightarrow{FM}$|,則該橢圓離心率為$\frac{\sqrt{3}}{3}$.

分析 F(c,0),直線BF的方程為:$\frac{x}{c}+\frac{y}$=1,即bx+cy-bc=0,與橢圓方程聯(lián)立化為:(a2+c2)x2-2a2cx=0,利用根與系數(shù)的關(guān)系可得xM+0=$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$,由于|$\overrightarrow{BF}$|=2|$\overrightarrow{FM}$|,可得$\overrightarrow{BF}$=2$\overrightarrow{FM}$,則c-0=2(xM-c),代入即可得出.

解答 解:F(c,0),直線BF的方程為:$\frac{x}{c}+\frac{y}$=1,即bx+cy-bc=0,
聯(lián)立$\left\{\begin{array}{l}{bx+cy-bc=0}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,化為:(a2+c2)x2-2a2cx=0,
則xM+0=$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$,即xM=$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$,
∵|$\overrightarrow{BF}$|=2|$\overrightarrow{FM}$|,∴$\overrightarrow{BF}$=2$\overrightarrow{FM}$,
則c-0=2(xM-c),
∴2xM=3c,
∴2×$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$=3c,
化為:a2=3c2,
可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、向量坐標(biāo)運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.$\frac{3}{2}$B.$\frac{7}{4}$C.$\frac{23}{12}$D.$\frac{49}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知三角形ABC的三個(gè)頂點(diǎn)A(6,3),B(9,3),C(3,6),求$\overrightarrow{AB}$•$\overrightarrow{AC}$和∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.偶函數(shù)f(x)在[0,+∞)上單調(diào)遞增,若f(1)=0,則不等式f(x)>0的解集是( 。
A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.y=sin2x的圖象是由函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向( 。﹤(gè)單位而得到.
A.左平移$\frac{π}{12}$B.左平移$\frac{π}{6}$C.右平移$\frac{π}{12}$D.右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.從四面體ABCD的6條棱的中點(diǎn)及其四個(gè)頂點(diǎn)共10個(gè)點(diǎn)中任取4個(gè)點(diǎn),則這四個(gè)點(diǎn)不共面的概率是(  )
A.$\frac{5}{7}$B.$\frac{7}{10}$C.$\frac{24}{35}$D.$\frac{47}{70}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.公安部新修訂的《機(jī)動(dòng)車(chē)登記規(guī)定》正式實(shí)施后,小型汽車(chē)的號(hào)牌已經(jīng)可以采用“自主編排”的方式進(jìn)行編排,某人欲選由A,B,C,D,E中的兩個(gè)字母,和1,2,3,4,5中的三個(gè)不同數(shù)字(三個(gè)數(shù)字都相鄰)組成一個(gè)號(hào)牌,則他選擇號(hào)牌的方法種數(shù)為3600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在如圖所示的多面體中,底面BCFE是梯形,EF∥BC,EF⊥EB,又平面ABE⊥平面BCFE,AD∥EF,BC=2AD=4,EF=3,AE=BE=2,AB=2$\sqrt{2}$.
(1)在BC上是否存在點(diǎn)G,使BD⊥EG,若存在,試確定G的位置;若不存在,請(qǐng)說(shuō)明理由;
(2)求二面角C-DF-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=1,點(diǎn)M是SD的重點(diǎn),AN⊥SC,且交SC于點(diǎn)N.
(Ⅰ)求證:直線SC⊥平面AMN;
(Ⅱ)求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案