設(shè)上的奇函數(shù),且,下面關(guān)于的判定:其中正確命題的序號(hào)為_______.

;

是以4為周期的函數(shù);

的圖象關(guān)于對(duì)稱;

的圖象關(guān)于對(duì)稱.

 

①②③

【解析】∵,

的周期為4,②正確.∴(∵為奇函數(shù)),即①正確.

又∵,

的圖象關(guān)于對(duì)稱,∴③正確,

又∵,當(dāng)時(shí),顯然的圖象不關(guān)于對(duì)稱,∴④錯(cuò)誤.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科平面向量坐標(biāo)運(yùn)算 數(shù)量積的定義(解析版) 題型:選擇題

設(shè)△ABC,是邊AB上一定點(diǎn),滿足,且對(duì)于AB上任一點(diǎn)P,恒有,則(    )

A.ABC=90

B.BAC=90°

C.AB=AC

D.AC=BC

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科雙曲線(解析版) 題型:解答題

已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).

(1)求雙曲線方程;

(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科利用導(dǎo)數(shù)求最值和極值(解析版) 題型:解答題

設(shè),其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).

(1)確定a的值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科利用導(dǎo)數(shù)求最值和極值(解析版) 題型:選擇題

已知函數(shù).若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,則直線l的方程為(    )

A.x+y-1=0

B.x-y-1=0

C.x+y+1=0

D.x-y+1=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科函數(shù)的奇偶性(解析版) 題型:選擇題

設(shè)為定義在R上的奇函數(shù),當(dāng)時(shí),(b為常數(shù)),則(    )

A.3

B.1

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科函數(shù)圖像(解析版) 題型:填空題

已知函數(shù)的圖象與函數(shù)的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科函數(shù)與方程(解析版) 題型:選擇題

函數(shù)的零點(diǎn)個(gè)數(shù)為( )

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科二項(xiàng)式定理與性質(zhì)(解析版) 題型:選擇題

若將函數(shù) 表示為, 其中為實(shí)數(shù),則( )

A.10 B.20 C.-10 D.-20

 

查看答案和解析>>

同步練習(xí)冊(cè)答案