15.延川中學(xué)高二文科約有300人,其中特優(yōu)班約有30人,實(shí)驗(yàn)班約有90人,普通班約有180人,想了解高二文科數(shù)學(xué)學(xué)習(xí)情況,現(xiàn)采用分層抽樣抽取容量為30的樣本進(jìn)行考核,那么特優(yōu)班、實(shí)驗(yàn)班、普通班各抽取的人數(shù)分別為( 。
A.6,9,15B.3,9,18C.3,6,11D.3,8,19

分析 因?yàn)椴捎梅謱映闃,所以只需按照各層的比抽出樣本容量即可,可先求出樣本容量和總題數(shù)的比,再計(jì)算每一層抽取的樣本數(shù)即可.

解答 解:∵采用分層抽樣,∴只需按照各層的比抽出樣本容量即可,比例為$\frac{30}{300}$=$\frac{1}{10}$,
∴特優(yōu)班、實(shí)驗(yàn)班、普通班各抽取的人數(shù)分別為3,9,18.
故選B.

點(diǎn)評(píng) 本題考查了抽樣方法中的分層抽樣,計(jì)算時(shí)要細(xì)心,避免出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=(m2-m-1)x4m+3是冪函數(shù),對(duì)任意x1,x2∈(0,+∞),且x1≠x2,滿足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,若a,b∈R,且a+b>0,ab<0.則f(a)+f(b)的值( 。
A.恒大于0B.恒小于0C.等于0D.無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)y=-2x+x3的單調(diào)遞減區(qū)間是( 。
A.(-∞,-$\frac{\sqrt{6}}{3}$)B.($\frac{\sqrt{6}}{3}$,+∞)C.(-∞,-$\frac{\sqrt{6}}{3}$)∪($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.二項(xiàng)式${(\sqrt{x}+\frac{1}{3x})^n}$的展開(kāi)式中只有第四項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)是(  )
A.$\frac{5}{9}$B.$\frac{5}{3}$C.5D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=(2-a)(x-1)-2lnx
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,$\frac{1}{2}$)上無(wú)零點(diǎn),求a最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.小明和小剛正在做擲骰子游戲,兩人各擲一枚骰子,當(dāng)兩枚骰子點(diǎn)數(shù)之和為奇數(shù)時(shí),小剛得1分,否則小明得1分.這個(gè)游戲公平嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.log279=( 。
A.$\frac{1}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow m=(a,b,0),\overrightarrow n=(c,d,1)$其中a2+b2=c2+d2=1,現(xiàn)有以下命題:
(1)向量$\overrightarrow n$與z軸正方向的夾角恒為定值(即與c,d無(wú)關(guān) );
(2)$\overrightarrow m•\overrightarrow n$的最大值為$\sqrt{2}$;
(3)$\left?{\overrightarrow m,\overrightarrow n}\right>$($\overrightarrow m•\overrightarrow n$的夾角)的最大值為$\frac{3π}{4}$;
(4)若定義$\overrightarrow u×\overrightarrow v=|{\overrightarrow u}|•|{\overrightarrow v}|sin\left?{\overrightarrow u,\overrightarrow v}\right>$,則$|{\overrightarrow m×\overrightarrow n}|$的最大值為$\sqrt{2}$.
其中正確的命題有(1)(3)(4).(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若等邊△ABC的邊長(zhǎng)為$2\sqrt{3}$,平面內(nèi)一點(diǎn)M滿足$\overrightarrow{CM}=\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}$,則$\overrightarrow{MA}•\overrightarrow{MB}$等于( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案