18.集合A={x|x2-2x<0},B={x|1≤x≤4},則A∩B={x|1≤x<2}.

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式變形得:x(x-2)<0,
解得:0<x<2,即A={x|0<x<2},
∵B={x|1≤x≤4},
∴A∩B={x|1≤x<2},
故答案為:{x|1≤x<2}.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(-∞,0)上是減函數(shù)的是( 。
A.f(x)=x3+xB.f(x)=|x|+1C.f(x)=-x2+1D.f(x)=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合.若直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}}$)=3$\sqrt{2}$
(1)把直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)已知P為曲線C:$\frac{x^2}{16}+\frac{y^2}{9}$=1上一點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足z(3+4i)=5-5i,則復(fù)數(shù)z在復(fù)平面對應(yīng)的點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果關(guān)于x的不等式|x-2|-|x-5|<2的解集為{x|x<$\frac{9}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC中,A=$\frac{π}{6}$,b=2,以下錯(cuò)誤的是( 。
A.若a=1,則c有一解B.若a=$\sqrt{3}$,則c有兩解
C.若a=$\frac{11}{6}$,則c有兩解D.若a=3,則c有兩解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$當(dāng)x∈[0,10]時(shí),關(guān)于x的方程f(x)=x的所有解的和為( 。
A.50B.55C.60D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.方程x2-xy+2y+1=0表示的曲線經(jīng)過4個(gè)A(1,-2),B(2,-3),C(3,10),D(0,-$\frac{1}{2}}$)中的( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知正實(shí)數(shù)x,y滿足$\frac{1}{x}$+$\frac{2}{y}$=1,那么2x+3y的最小值為8+4$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案