設(shè)O為坐標(biāo)原點(diǎn),M(2,-1),點(diǎn)N(x,y)滿足
x≥2
y≥2
x+y≤6
,則
OM
ON
的最大值是
 
分析:先根據(jù)約束條件畫出可行域,由于
OM
ON
=(2,-1)•(x,y)=2x-y,設(shè)z=2x-y,再利用z的幾何意義求最值,只需求出直線z=2x-y過可行域內(nèi)的點(diǎn)A時(shí),z最大即可.
解答:精英家教網(wǎng)解:先根據(jù)約束條件畫出可行域,
OM
ON
=(2,-1)•(x,y)=2x-y,
設(shè)z=2x-y,
將z的最大值轉(zhuǎn)化為y軸上的截距最小值問題,
可得當(dāng)直線z=2x-y經(jīng)過交點(diǎn)A(4,2)時(shí),z最大,
最大為:8.
故答案為:8.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),M(2,1),點(diǎn)N(x,y)滿足
x-4y≤-3
3x+5y≤25
x≥1
,則
OM
ON
的最大值是( 。
A、9B、2C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,一條準(zhǔn)線l:x=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),M是l上的點(diǎn),F(xiàn)為橢圓C的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓D交于P,Q兩點(diǎn).
①若PQ=
6
,求圓D的方程;
②若M是l上的動(dòng)點(diǎn),求證:點(diǎn)P在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),M(2,1),點(diǎn)N(x,y)滿足
x-4y≤-3
3x+5y≤25
x≥1
,則|
ON
|cos∠MON的最大值為
12
5
5
12
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),M(1,2),若N(x,y)滿足
2x+y-4≤0
x-y+2≥0
,則
OM
ON
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)N(x,y)的坐標(biāo)滿足
x≥0, y≥0
2x+y-1≤0
,設(shè)O為坐標(biāo)原點(diǎn),M(1,-2),則
OM
ON
的最小值為( 。
A、-4
B、-2
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案