分析 由$\overrightarrow{m}$∥$\overrightarrow{n}$,可得4b-a(b-1)=0,(b≠1),而a=$\frac{4b}{b-1}$>0,解得b>1.變形再利用基本不等式的性質(zhì)即可得出a+b的最小值.
解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴4b-a(b-1)=0,(b≠1)
∴a=$\frac{4b}{b-1}$>0,解得b>1.
∴a+b=$\frac{4b}{b-1}$+b=5+$\frac{4}{b-1}$+b-1.
b>1時,a+b≥5+2$\sqrt{\frac{4}{b-1}×(b-1)}$=9,當且僅當b=3時,取等號,
∴a+b最小值為9.
故答案為:9.
點評 本題考查了向量共線定理、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0] | B. | [-1,0] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com