在△ABC中,“cosA=2sinBsinC”是“△ABC為鈍角三角形”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:由cosA=2sinBsinC得-cos(B+C)=2sinBsinC,
即sinBsinC-cosBsinC=2sinBsinC,
即cosBsinC+sinBsinC=cos(B-C)=0,
則B-C=±
π
2
,即B=C+
π
2
,或C=B+
π
2
,則△ABC為鈍角三角形,即充分性成立,
若A=
3
,B=C=
π
6
,則cosA=2sinBsinC不成立,
則,“cosA=2sinBsinC”是“△ABC為鈍角三角形”的充分不必要條件,
故選:A
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)三角函數(shù)的公式進(jìn)行化簡是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)在x=x°處可導(dǎo),且
lim
△x→0
f(x0+3△x)-f(x0)
△x
=1,則f′(x0)等于( 。
A、1
B、0
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,sinA:sinB:sinC=4:5:6,則cosA:cosB:cosC的值為( 。
A、4:5:16
B、16:25:36
C、12:9:2
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是偶函數(shù),在(0,+∞)上為減函數(shù),若f(
1
2
)>0>f(
3
)
,則f(x)=0的根的個數(shù)為( 。
A、2個
B、2個或 1個
C、3個
D、2個或3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lgx+lgx3+lgx5+…+lgx21=11,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1
+
1
2-x
的定義域是(  )
A、[-1,2)∪(2,+∞)
B、{x|x≥-1}
C、(-1,2)∪(2,+∞)
D、{x|x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(a1,b1,c1),
CD
=(a2,b2,c2
),則AB∥CD是
a1
a2
=
b1
b2
=
c1
c2
的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有集合A={x|
3-2x
x-1
+1≥0},B={x|2ax<a+x,a>
1
2
}
,若A∪B=B,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

180°是指軸線角.
 
(判斷對錯)

查看答案和解析>>

同步練習(xí)冊答案