【題目】已知F1 , F2分別為雙曲線C: =1的左、右焦點,若存在過F1的直線分別交雙曲線C的左、右支于A,B兩點,使得∠BAF2=∠BF2F1 , 則雙曲線C的離心率e的取值范圍是(
A.(3,+∞)
B.(1,2+
C.(3,2+
D.(1,3)

【答案】C
【解析】解:在△BAF2和△BF2F1中, 由∠BAF2=∠BF2F1 , ∠ABF2=∠F2BF1
可得△BAF2∽△BF2F1 ,
即有 = = ,
即為 = = ,
= =e>1,
可得AF2=e(BF2﹣BA)>c+a,即有BF2>BA,
又BA>2a,
即BF2>2a,
BF2取最小值c﹣a時,BF2也要大于BA,
可得2a<c﹣a,即c>3a,
即有e= >3.
當(dāng)AF1與x軸重合,即有 = ,
e= ,可得e2﹣4e﹣1=0,解得e=2+ ,
即有3<e<2+
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角△ABC中,∠ACB=30°,∠B=90°,D為AC中點(左圖),將∠ABD沿BD折起,使得AB⊥CD(右圖),則二面角A﹣BD﹣C的余弦值為(

A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,橢圓 的中心為坐標(biāo)原點,左焦點為F1(﹣1,0),離心率

(1)求橢圓G 的標(biāo)準(zhǔn)方程;

(2)已知直線 與橢圓 交于 兩點,直線 與橢圓 交于 兩點,且 ,如圖所示.

①證明: ;

②求四邊形 的面積 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,其左頂點在圓上.

Ⅰ)求橢圓的方程;

直線交橢圓兩點,設(shè)點關(guān)于軸的對稱點為(點與點不重合),且直線軸的交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過點,以原點為極點,以軸正半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點,求的取值范圍;

(2)設(shè)為曲線上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,有下列4個命題:

,則的圖象關(guān)于直線對稱;

的圖象關(guān)于直線對稱;

為偶函數(shù),且,則的圖象關(guān)于直線對稱;

為奇函數(shù),且,則的圖象關(guān)于直線對稱.

其中正確的命題為 .(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

同步練習(xí)冊答案