【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且a2+b2﹣c2= ab.
(1)求cos 的值;
(2)若c=2,求△ABC面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1.
(1)求a,b的值;
(2)設(shè) ,若關(guān)于x的方程 在(﹣∞,0)∪(0,+∞)上有三個不同的實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別是雙曲線C: =1(a>0,b>0)的左、右焦點,其離心率為e,點B的坐標(biāo)為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸,直線F1B的交點分別為M,R,若△RMF1與△PQF2的面積之比為e,則雙曲線C的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2為橢圓 的左、右焦點,F(xiàn)2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義運算: =a1a4﹣a2a3 , 將函數(shù)f(x)= (ω>0)的圖象向左平移 個單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則ω的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn , Tn分別是數(shù)列{an},{bn}的前n項和,已知對于任意n∈N* , 都有3an=2Sn+3,數(shù)列{bn}是等差數(shù)列,且T5=25,b10=19. (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn= ,求數(shù)列{cn}的前n項和Rn , 并求Rn的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com