在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動點(diǎn)P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動點(diǎn)P的軌跡E的方程;

(Ⅱ)若N是直線x=2上異于點(diǎn)B的任意一點(diǎn),直線AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN|  為定值.

 

【答案】

(Ⅰ);(Ⅱ)詳見解析.

【解析】

試題分析:(Ⅰ)根據(jù)斜率公式,有斜率乘積等于整理即得,注意;(Ⅱ)設(shè)直線的方程,與橢圓方程組成方程組,消去,由韋達(dá)定理求點(diǎn)的坐標(biāo),根據(jù)直線與以為直徑的圓的另一個(gè)交點(diǎn)為,得,從而得到直線的方程,確定恒過的定點(diǎn).證明三點(diǎn)共線,又是以為直徑的圓的切線,由切割線定理可知,,即為定值.

試題解析:(Ⅰ)設(shè),由得   ,其中,

整理得點(diǎn)的軌跡方程為.       (4分)

(Ⅱ)設(shè)點(diǎn),則直線的方程為,

解方程組,消去,

設(shè),則,,

從而,又

直線與以為直徑的圓的另一個(gè)交點(diǎn)為,,

方程為,即,過定點(diǎn),        (9分)

定值證法一:即三點(diǎn)共線,又是以為直徑的圓的切線,由切割線定理可知,,為定值.                                  (12分)

定值證法二:直線:,直線:,  

聯(lián)立得,, 

,為定值.       (12分)

考點(diǎn):橢圓方程,直線與橢圓的關(guān)系,定點(diǎn)、定值問題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對稱的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊答案