3.將一顆質(zhì)地均勻的骰子(一種各個面上分別標(biāo)有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點數(shù)之和大于10的概率是$\frac{1}{12}$.

分析 先求出基本事件總數(shù),再利用列舉法求出出現(xiàn)向上的點數(shù)之和大于10包含的基本事件的個數(shù),由此能求出出現(xiàn)向上的點數(shù)之和大于10的概率.

解答 解:將一顆質(zhì)地均勻的骰子(一種各個面上分別標(biāo)有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,
基本事件總數(shù)n=6×6=36,
出現(xiàn)向上的點數(shù)之和大于10包含的基本事件有:(5,6),(6,5),(6,6),
共有m=3個,
∴出現(xiàn)向上的點數(shù)之和大于10的概率p=$\frac{m}{n}$=$\frac{3}{36}=\frac{1}{12}$.
故答案為:$\frac{1}{12}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)的定義域為R,且滿足f(x+3)+f(x)=2,又當(dāng)x∈[-3,0]時,f(x)=x2+1,則f(4)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.角α的終邊過點(-2,4),則cosα=( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線E:y2=4x焦點為F,準(zhǔn)線為l,P為l上任意點.過P作E的兩條切線,切點分別為Q,R.
(1)若P在x軸上,求|QR|;
(2)求證:以PQ為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點B為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左準(zhǔn)線與x軸的交點,點A坐標(biāo)為(0,b),若滿足$\overrightarrow{AP}$=3$\overrightarrow{AB}$點P在雙曲線上,則雙曲線的離心率為$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若存在兩個正實數(shù)x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.$({0,\frac{3}{2e}}]$C.$[{\frac{3}{2e},+∞})$D.$({-∞,0})∪[{\frac{3}{2e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某人2010年1月1日到銀行存入a元,若每年利息為r,按復(fù)利計算利息,則到2020年1月1日可取回的本息和為a(1+r)10元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“?x∈R,2x2-3x+9<0”的否定是?x∈R,2x2-3x+9≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{2x-3}{2x+1}$+a在[0,$\frac{3}{2}$]的值域為集合A,函數(shù)g(x)=$\sqrt{x+2}$+$\sqrt{2-x}$的定義域為集合B.
(1)若a=0,求∁R(A∩B);
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案