A. | (-∞,0) | B. | $({0,\frac{3}{2e}}]$ | C. | $[{\frac{3}{2e},+∞})$ | D. | $({-∞,0})∪[{\frac{3}{2e},+∞})$ |
分析 根據函數與方程的關系將方程進行轉化,利用換元法轉化為方程有解,構造函數求函數的導數,利用函數極值和單調性的關系進行求解即可.
解答 解:由3x+a(2y-4ex)(lny-lnx)=0得3x+2a(y-2ex)ln$\frac{y}{x}$=0,
即3+2a($\frac{y}{x}$-2e)ln$\frac{y}{x}$=0,
即設t=$\frac{y}{x}$,則t>0,
則條件等價為3+2a(t-2e)lnt=0,
即(t-2e)lnt=-$\frac{3}{2a}$有解,
設g(t)=(t-2e)lnt,
g′(t)=lnt+1-$\frac{2e}{t}$為增函數,
∵g′(e)=lne+1-$\frac{2e}{e}$=1+1-2=0,
∴當t>e時,g′(t)>0,
當0<t<e時,g′(t)<0,
即當t=e時,函數g(t)取得極小值為:g(e)=(e-2e)lne=-e,
即g(t)≥g(e)=-e,
若(t-2e)lnt=-$\frac{3}{2a}$有解,
則-$\frac{3}{2a}$≥-e,即$\frac{3}{2a}$≤e,
則a<0或a≥$\frac{3}{2e}$,
故選:D.
點評 本題主要考查不等式恒成立問題,根據函數與方程的關系,轉化為兩個函數相交問題,利用構造法和導數法求出函數的極值和最值是解決本題的關鍵.綜合性較強.
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=log2x | B. | $y=-\sqrt{x}$ | C. | $y={(\frac{1}{2})^x}$ | D. | $y=\frac{1}{x}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<z<x |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com