5.已知數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n,都有${a_n}=\frac{3}{4}{S_n}+2$成立.
(1)記bn=log2an,求數(shù)列{bn}的通項公式;
(2)設(shè)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求證:數(shù)列{cn}的前n項和Tn<$\frac{1}{6}$.

分析 (1)根據(jù)數(shù)列的遞推公式即可求出數(shù)列{an}為等比數(shù)列,根據(jù)對數(shù)的運算性質(zhì)可得bn=2n+1,
(2)根據(jù)裂項求和和放縮法即可得到答案.

解答 解:(1)在${a_n}=\frac{3}{4}{S_n}+2$中令n=1得a1=8,
因為對任意正整數(shù)n,都有${a_n}=\frac{3}{4}{S_n}+2$成立,所以an+1=$\frac{3}{4}$Sn+1+2,
兩式相減得an+1-an=$\frac{3}{4}$an+1,
所以an+1=4an
又a1≠0,
所以數(shù)列{an}為等比數(shù)列,
所以an=8•4n-1=22n+1,
所以bn=log2an=2n+1,
(2)${c_n}=\frac{1}{{({2n+1})({2n+3})}}=\frac{1}{2}({\frac{1}{2n+1}-\frac{1}{2n+3}})$,
所以${T_n}=\frac{1}{2}[{({\frac{1}{3}-\frac{1}{5}})+({\frac{1}{5}-\frac{1}{7}})+…+({\frac{1}{2n+1}-\frac{1}{2n+3}})}]=\frac{1}{2}({\frac{1}{3}-\frac{1}{2n+3}})=\frac{n}{{3({2n+3})}}$<$\frac{1}{6}$.

點評 本題考查了根據(jù)數(shù)列的遞推公式求通項公式和裂項求和以及放縮法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足($\sqrt{3}$+3i)z=3i,則|z|=( 。
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?x∈[-2,1],使不等式ax3-x2+4x+3≥0成立,則實數(shù)a的取值范圍是( 。
A.[-5,-3]B.[-6,-$\frac{9}{8}$]C.[-6,-2]D.[-4,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標系中,方程x2+y2=1所對應(yīng)的圖象經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后的圖象所對應(yīng)的方程為$\frac{x^2}{25}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(2,0),則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,且曲線y=f(x)在點(0,1)處的切線斜率為-3.
(1)求f(x)單調(diào)區(qū)間;
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直三棱柱A1B1C1-ABC中,AB=AC=AA1,$BC=\sqrt{2}AB$,點D是BC的中點.
(I)求證:AD⊥平面BCC1B1;
(II)求證:A1B∥平面ADC1;
(III)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3與$y={x^{\frac{1}{2}}}$圍成的區(qū)域,若向區(qū)域Ω上隨機投一點P,則點P落入?yún)^(qū)域A的概率為$\frac{5}{48}$.

查看答案和解析>>

同步練習(xí)冊答案