13.在平面直角坐標(biāo)系中,方程x2+y2=1所對(duì)應(yīng)的圖象經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后的圖象所對(duì)應(yīng)的方程為$\frac{x^2}{25}+\frac{y^2}{9}=1$.

分析 由伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$,可得:$\left\{\begin{array}{l}{x=\frac{1}{5}x′}\\{y=\frac{1}{3}y′}\end{array}\right.$,代入方程x2+y2=1即可得出結(jié)論.

解答 解:由伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$可得:$\left\{\begin{array}{l}{x=\frac{1}{5}x′}\\{y=\frac{1}{3}y′}\end{array}\right.$
代入方程x2+y2=1可得:$\frac{x{′}^{2}}{25}+\frac{y{′}^{2}}{9}$=1,即$\frac{x^2}{25}+\frac{y^2}{9}=1$.
故答案為:$\frac{x^2}{25}+\frac{y^2}{9}=1$.

點(diǎn)評(píng) 本題考查了坐標(biāo)變換,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線x=t分別與函數(shù)f(x)=ex的圖象及g(x)=2x的圖象相交于點(diǎn)A和點(diǎn)B,則|AB|的最小值為( 。
A.2B.3C.4-2ln2D.2-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),記數(shù)列{an}的前n項(xiàng)和為Sn,則S2017=( 。
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2017}-1$D.$\sqrt{2017}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若|x+3|+|x-1|>k對(duì)任意的x∈R恒成立,則實(shí)數(shù)k的取值范圍為(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,且f($\frac{π}{4}$)=0,將函數(shù)f(x)圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再將所得圖象向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式;
(2)是否存在x0∈($\frac{π}{6}$,$\frac{π}{4}$),使得f(x0),g(x0),f($\frac{π}{6}$)按照某種順序成等差數(shù)列?若存在,請(qǐng)求出x0的值,若不存在,說(shuō)明理由;
(3)求實(shí)數(shù)a,使得F(x)=f(x)+ag(x)在(0,2π)內(nèi)恰有3個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(α)=$\frac{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}{cos(\frac{π}{2}+α)sin(π+α)}$
(1)若α=-$\frac{π}{3}$,求f(α)的值;
(2)若α為第二象限角,且cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n,都有${a_n}=\frac{3}{4}{S_n}+2$成立.
(1)記bn=log2an,求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求證:數(shù)列{cn}的前n項(xiàng)和Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)集合A={y|y=2x,x∈R},B={x|x2-1<0},則A∪B=(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四個(gè)函數(shù)中,在區(qū)間(0,1)上是減函數(shù)的是(  )
A.y=log2xB.$y=\frac{1}{x}$C.y=2xD.$y={x^{\frac{2}{3}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案