2.在10件同類型的產(chǎn)品中有2件次品,現(xiàn)抽取3件進(jìn)行檢驗(yàn),每次抽取1件,并且取出后不再放回,則取出的3件產(chǎn)品中至少有1件次品的概率為( 。
A.$\frac{7}{10}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{7}{15}$

分析 本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生所包含的事件是從10件產(chǎn)品中抽取3件,共有C103=120種結(jié)果,3次抽取中一1件次品也沒有抽到的有C83=56,至少抽到1件次品為120-56=64,則得到概率.

解答 解:試驗(yàn)發(fā)生所包含的事件是從10件產(chǎn)品中抽取3件,共有C103=120種結(jié)果,
3次抽取中一1件次品也沒有抽到的有C83=56,
則至少抽到1件次品為120-56=64,
故3至少抽到1件次品的概率P=$\frac{64}{120}$=$\frac{8}{15}$.
故選:C.

點(diǎn)評(píng) 本題考查等可能事件的概率,可以應(yīng)用窮舉法,列舉是基本的解題方法,注意不要重復(fù)、不要遺漏.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在梯形ABCD中,AB∥CD,AB=2AD=2DC=2CB=2,四邊形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,點(diǎn)G是BF的中點(diǎn).
(Ⅰ)求證:CG∥平面ADF;
(Ⅱ)求二面角A-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)M是49個(gè)不同的自然數(shù)構(gòu)成的集合,M中每一個(gè)數(shù)的素因子均小于10,求證:從M中一定可選出四個(gè)不同的數(shù),使它們之積等于一個(gè)自然數(shù)的四次方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.記數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意的n∈N*,都有Sn=2an-3,則數(shù)列{an}的第6項(xiàng)a6=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,記∠BAC=x (角的單位是弧度制),△ABC的面積為S△ABC=$\frac{1}{2}$|AB|•|AC|sin∠BAC,且$\overrightarrow{AB}•\overrightarrow{AC}$=8,4≤S△ABC≤4$\sqrt{3}$.
(Ⅰ)求x的取值范圍;
(Ⅱ)就(Ⅰ)中x的取值范圍,求函數(shù)f(x)=2$\sqrt{3}$sin2(x+$\frac{π}{4}$)+2cos2x-$\sqrt{3}$的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某商場每天以每件100元的價(jià)格購入A商品若干件,并以每件200元的價(jià)格出售,若所購進(jìn)的A商品前8小時(shí)沒有售完,則商場對(duì)沒賣出的A商品以每件60元的低價(jià)當(dāng)天處理完畢(假定A商品當(dāng)天能夠處理完).該商場統(tǒng)計(jì)了100天A商品在每天的前8小時(shí)的銷售量,制成如表格.
前8小時(shí)的銷售量t(單位:件)567
頻    數(shù) 40 3525
¬(Ⅰ)若某天該商場共購入7件A商品,在前8個(gè)小時(shí)售出5件. 若這些產(chǎn)品被7名不同的顧客購買,現(xiàn)從這7名顧客中隨機(jī)選3人進(jìn)行回訪,記X表示這3人中以每件200元的價(jià)格購買的人數(shù),求X的分布列;
(Ⅱ)將頻率視為概率,要使商場每天購進(jìn)A商品時(shí)所獲得的平均利潤最大,則每天應(yīng)購進(jìn)幾件A商品,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)向量$\overrightarrow{a}$=(1,cosθ))與$\overrightarrow$=(-1,2cosθ)垂直,則cos2θ等于( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)函數(shù).對(duì)于三次函數(shù)y=f(x),若方程f''(x0)=0,則點(diǎn)($\begin{array}{l}{{x_0},f({x_0})}\end{array}$)即為函數(shù)y=f(x)圖象的對(duì)稱中心.設(shè)函數(shù)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=( 。
A.1008B.2014C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示,如果執(zhí)行如圖所示的程序框圖,輸入n=6,m=4,那么輸出的p=2520.

查看答案和解析>>

同步練習(xí)冊(cè)答案