16.已知偶函數(shù)f(x)的定義域為{x|x≠0,x∈R},且當(dāng)x>0時,f(x)=$\left\{\begin{array}{l}{{4}^{|x-1|},0<x≤2}\\{f(x-2),x>2}\end{array}\right.$,則函數(shù)g(x)=f(x)-log2(|x|+1)(x∈[-6,6])的零點個數(shù)為( 。
A.9B.10C.8D.12

分析 利用函數(shù)圖象平移作出f(x)在和y=log2(|x|+1)在(0,6]上的函數(shù)圖象,判斷交點個數(shù),根據(jù)圖象對稱得出零點個數(shù).

解答 解:∵當(dāng)x>2時,f(x)=f(x-2),∴f(x)在(0,+∞)上是周期函數(shù),
令h(x)=log2(|x|+1),作出f(x),h(x)在(0,6]上的函數(shù)圖象如圖所示:

∵h(1)=f(1),h(3)=log24=2,h(5)=log26>1,h(6)=log27<4,
∴f(x)與h(x)在(0,6]上有5個交點,
又f(x)是偶函數(shù),h(x)是偶函數(shù),∴f(x)與h(x)在[-6,0)上有5個交點,
∴f(x)與h(x)在[-6,6]上有10個交點,即g(x)=f(x)-h(x)有10個零點.
故選:B.

點評 本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,函數(shù)圖象的變換,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間的產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.閱讀右邊程序,若輸入的a,b值分別為3,-5,則輸出的a,b值分別為(  )
A.-1,4B.3,$\frac{1}{2}$C.$\frac{1}{2},-\frac{5}{4}$D.3,$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前項和為${S_n}={n^2}-3n$,則通項公式an等于( 。
A.an=2n-3B.an=2n-4C.an=3-3nD.an=2n-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1),$g(x)=a+bx-\frac{1}{2}{x^2}+\frac{1}{3}{x^3}$,函數(shù)y=f(x)與函數(shù)y=g(x)的圖象在交點(0,0)處有公共切線.
(1)求a,b的值;       
(2)證明:f(x)≤g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=|x|-1,又g(x)=$\left\{\begin{array}{l}{f(x),x≤1}\\{\frac{lnx}{x},x>1}\end{array}\right.$,若函數(shù)F(x)=g(x)-kx在區(qū)間[-7,+∞)上恰有7個零點,則實數(shù)k的取值范圍為( 。
A.($\frac{1}{6}$,$\frac{1}{4}$)B.($\frac{1}{6}$,$\frac{1}{2e}$)C.($\frac{1}{8}$,$\frac{1}{2e}$)D.($\frac{1}{2e}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex,g(x)=lnx+m.
(1)當(dāng)m=-1時,求函數(shù)F(x)=$\frac{f(x)}{x}$+x•g(x)在(0,+∞)上的極值;
(2)若m=2,求證:當(dāng)x∈(0,+∞)時,f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$f′(1)x+xlnx
(1)求函數(shù)f(x)的極值;
(2)若k∈Z,且f(x)>k(x-1)對任意的x∈(1,+∞)都成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的焦點為F,其準線與x軸相交于點M,過焦點F且斜率為1的直線與拋物線相交所得弦的中點的縱坐標為2.已知直線l:x=my+$\frac{p}{2}$與拋物線C交于A,B兩點,且$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(1≤λ≤3).
(1)求拋物線C的方程;
(2)求$\overrightarrow{MA}$2+$\overrightarrow{MB}$2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案