16.已知f(x)=ax2+bx+1(a>0,b∈R)
(Ⅰ)已知f(x)在R上存在唯一一個零點1,求a和b的值;
(Ⅱ)已知f(x)在區(qū)間[0,1]上存在兩個零點,證明:a+|b|>3.

分析 (I)令判別式等于零,且f(1)=0,列方程解出;
(II)根據(jù)零點范圍列出方程組,得出a,b的關(guān)系,利用不等式的性質(zhì)求出a,b的范圍.

解答 解:(I)∵f(x)在R上存在唯一一個零點1,
∴$\left\{\begin{array}{l}{a+b+1=0}\\{^{2}-4a=0}\end{array}\right.$,解得a=1,b=-2.
(II)∵f(x)在區(qū)間[0,1]上存在兩個零點,a>0,
∴$\left\{\begin{array}{l}{f(0)≥0}\\{f(1)≥0}\\{△>0}\\{0<-\frac{2a}<1}\end{array}\right.$,即$\left\{\begin{array}{l}{a+b+1≥0}\\{^{2}-4a>0}\\{0<-\frac{2a}<1}\end{array}\right.$,
由0$<-\frac{2a}<1$得-2a<b<0,∴b2<4a2
由b2-4a>0得b2>4a,
∴4a<4a2,解得a>1.
∴b2>4a>4,
又b<0,∴b<-2.即|b|>2.
∴a+|b|>3.

點評 本題考查了函數(shù)的零點,二次函數(shù)的性質(zhì),不等式的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和Sn=$\frac{{{n^2}+n}}{2}$,數(shù)列{bn}的通項為bn=f(n),且f(n)滿足:①f(1)=$\frac{1}{2}$;②對任意正整數(shù)m,n,都有f(m+n)=f(m)f(n)成立.
(1)求an與bn;
(2)設(shè)數(shù)列{anbn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正項數(shù)列{an}前n項和為Sn,且2Sn=an2+n-1(n∈N+).
(Ⅰ)求數(shù)列{an}通項公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}中,a10=19公差d≠0,且a1,a2,a5成等比數(shù)列.
(1)求an;
(2)設(shè)bn=an2n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}是首項為4,公差為3的等差數(shù)列,數(shù)列{bn}滿足bn(an$\sqrt{{a}_{n+1}}$+an+1$\sqrt{{a}_{n}}$)=1,則數(shù)列{bn}的前32項的和為$\frac{2}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系中,定義:一條直線經(jīng)過一個點(x,y),若x,y都是整數(shù),就稱該直線為完美直線,這個點叫直線的完美點,若一條直線上沒有完美點,則就稱它為遺憾直線.現(xiàn)有如下幾個命題:
①如果k,b都是無理數(shù),那么直線y=kx+b一定是遺憾直線;
②“直線y=kx+b是完美直線”的充要條件是“k,b都是有理數(shù)”;
③存在恰有一個完美點的完美直線;
④完美直線l經(jīng)過無窮多個完美點,當(dāng)且僅當(dāng)直線l經(jīng)過兩個不同的完美點.
其中正確的命題是( 。
A.②③B.②③④C.①③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C的對邊分別為a,b,c.若a+c=$\sqrt{2}$b.
(I)求證:B≤$\frac{π}{2}$;
(Ⅱ)若△ABC的面積為S,且S=tanB,b=2$\sqrt{3}$時,求S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC的三個頂點分別是A(2,2+2$\sqrt{2}$),B(0,2-2$\sqrt{2}$),C(4,2),試判斷△ABC是否是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“若x2+y2>2”,則“|x|>1,或|y|>1”的否命題是(  )
A.若x2+y2≤2,則|x|≤1且|y|≤1B.若x2+y2<2,則|x|≤1且|y|≤1
C.若x2+y2<2,則|x|<1或|y|<1D.若x2+y2<2,則|x|≤1或|y|≤1

查看答案和解析>>

同步練習(xí)冊答案