設(shè)x,y滿足
2x+y≥4
x-y≥-1
x-2y≤2
,則z=x+y的最小值為( 。
A、-2B、-1C、1D、2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=x+y的最小值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)B時(shí),
直線y=-x+z的截距最小,此時(shí)z最。
2x+y=4
x-2y=2
,解得
x=2
y=0
,即B(2,0),
代入目標(biāo)函數(shù)z=x+y得z=2+0=2.
即目標(biāo)函數(shù)z=x+y的最小值為2.
故選:D.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前五項(xiàng)是一個(gè)以-2為首項(xiàng),以3為公差的等差數(shù)列,從第五項(xiàng)起數(shù)列{an}成等比數(shù)列,若Sn為數(shù)列{an}的前n項(xiàng)和,且
lim
n→∞
Sn=40,求
(1)數(shù)列{an}的通項(xiàng)公式
(2)數(shù)列{an}的前n項(xiàng)和Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sin
C
2
=
10
4

(1)求cosC的值:
(2)若△ABC的面積為△,且sin2A+sin2B=
13
16
sin2C,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知隨機(jī)變量 X服從正態(tài)分布 N(5,4),且 P( X>k)=P( X<k-4),則k的值為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)為正的等差數(shù)列{an}的公差為d=1,且
1
a1a2
+
1
a2a3
=
2
3

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:b1=λ,an+1bn+1+anbn=(-1)n+1(n∈N),是否存在實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+3x的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(x∈R),當(dāng)x=2時(shí),函數(shù)取得最大值2,其圖象在x軸上截得的線段長(zhǎng)為2,求其解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)=
x
的導(dǎo)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U=R,A={x|x>0},B={x|x<1},則A∩B=(  )
A、{x|0<x<1}
B、{x|0≤x<1}
C、{x|x<0}
D、{x|x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案