函數(shù)f(x)=logax(a>0)且a≠1在區(qū)間[
1
4
,
1
2
]上的最大值為2,則實數(shù)a的值為(  )
A、
2
B、
2
2
C、2
D、
1
2
考點:對數(shù)函數(shù)的值域與最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對數(shù)函數(shù)的性質(zhì)得到函數(shù)在[
1
4
,
1
2
)遞減,從而x=
1
4
時取到最大值2,列出方程組解出即可.
解答: 解:由題意得:0<a<1,函數(shù)f(x)在[
1
4
1
2
)遞減,
log
1
4
a
=2,∴a2=
1
4
,∴a=
1
2
,
故選:D.
點評:本題考查了對數(shù)函數(shù)的性質(zhì),考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以(1,3)為圓心,并且與直線3x-4y-6=0相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[0,
π
4
]
上單調(diào)遞增,且在這個區(qū)間上的最大值是
3
,那么ω=( 。
A、
2
3
B、
4
3
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(x2+2)的最大值為
 
,單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,A,B,C的對邊分別為a,b,c,acosC,bcosB,cosA成等差數(shù)列.
(1)求B的值;    
(2)求
a+c
b
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x2-2|x-1|.
(1)判斷函數(shù)f(x)的奇偶性;
(2)將f(x)用分段函數(shù)形式表示;
(3)畫出函數(shù)f(x)的圖象,并寫出滿足f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a4+a8=10,a10=6,則公差d等于( 。
A、
1
4
B、
1
2
C、2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A是△ABC三個內(nèi)角中的最小角.若sinA=
1
3
,則tanA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(π+A)=
1
3
,那么sin(
3
2
π-A)的值為( 。
A、
1
3
B、-
1
3
C、
2
3
3
D、-
2
3
3

查看答案和解析>>

同步練習(xí)冊答案