6.某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x)(萬
元),若年產(chǎn)量不足80千件,C(x)的圖象是如圖的拋物線,此時(shí)C(x)<0的解集為(-30,0),且C(x)的最小值是-75,若年產(chǎn)量不小于80千件,C(x)=51x+$\frac{10000}{x}$-1450,每千件商品售價(jià)為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

分析 (1)分兩種情況進(jìn)行研究,當(dāng)0<x<80時(shí),當(dāng)x≥80時(shí),根據(jù)年利潤=銷售收入-成本,列出函數(shù)關(guān)系式,投入成本為,根據(jù)年利潤=銷售收入-成本,列出函數(shù)關(guān)系式,最后寫成分段函數(shù)的形式,從而得到答案;
(2)根據(jù)年利潤的解析式,分段研究函數(shù)的最值,當(dāng)0<x<80時(shí),利用二次函數(shù)求最值,當(dāng)x≥80時(shí),利用基本不等式求最值,最后比較兩個(gè)最值,即可得到答案

解答 解:(1)∵每件商品售價(jià)為0.005萬元,
∴x千件商品銷售額為0.005×1000x萬元,
①當(dāng)0<x<80時(shí),根據(jù)年利潤=銷售收入-成本,
∴L(x)=(0.05×1000x)-$\frac{1}{3}$x2-10x-250=-$\frac{1}{3}$x2+40x-250;
②當(dāng)x≥80時(shí),根據(jù)年利潤=銷售收入-成本,
∴L(x)=(0.05×1000x)-51x-$\frac{10000}{x}$+1450-250=1200-(x+$\frac{10000}{x}$).
綜合①②可得,$L(x)=\left\{\begin{array}{l}-\frac{1}{3}{x^2}+40x-250{,_{\;}}_{\;}0<x<80\\ 1200-(x+\frac{10000}{x}){,_{\;}}_{\;}x≥80\end{array}\right.$;
(2)由(1)可知,$L(x)=\left\{\begin{array}{l}-\frac{1}{3}{x^2}+40x-250{,_{\;}}_{\;}0<x<80\\ 1200-(x+\frac{10000}{x}){,_{\;}}_{\;}x≥80\end{array}\right.$;
①當(dāng)0<x<80時(shí),L(x)=-$\frac{1}{3}$x2+40x-250=-$\frac{1}{3}$(x-60)2+950
∴當(dāng)x=60時(shí),L(x)取得最大值L(60)=950萬元;
②當(dāng)x≥80時(shí),L(x)=1200-(x+$\frac{10000}{x}$)≤1200-2$\sqrt{x•\frac{10000}{x}}$=1200-200=1000,
當(dāng)且僅當(dāng),即x=100時(shí),L(x)取得最大值L(100)=1000萬元.
綜合①②,由于950<1000,
∴當(dāng)產(chǎn)量為10萬件時(shí),該廠在這一商品中所獲利潤最大,最大利潤為1000萬元.

點(diǎn)評 本題主要考查函數(shù)模型的選擇與應(yīng)用.解決實(shí)際問題通常有四個(gè)步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號,建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.本題建立的數(shù)學(xué)模型為分段函數(shù),對于分段函數(shù)的問題,一般選用分類討論和數(shù)形結(jié)合的思想方法進(jìn)行求解.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x3-$\frac{1}{x}$的導(dǎo)數(shù)是( 。
A.y′=3x2-$\frac{1}{{x}^{2}}$B.y′=3x2-$\frac{1}{x}$C.y′=3x2+$\frac{1}{{x}^{2}}$D.y′=3x2+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知等差數(shù)列{an}前9項(xiàng)的和為27,a10=8,則a100=98.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.學(xué)校對同時(shí)從高一,高二,高三三個(gè)不同年級的某些學(xué)生進(jìn)行抽樣調(diào)查,從各年級抽出人數(shù)如表所示.工作人員用分層抽樣的方法從這些學(xué)生中共抽取6人進(jìn)行調(diào)查
年級高一高二高三
數(shù)量50150100
(1)求這6位學(xué)生來自高一,高二,高三各年級的數(shù)量;
(2)若從這6位學(xué)生中隨機(jī)抽取2人再做進(jìn)一步的調(diào)查,求這2人來自同一年級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若2arcsin(5x-2)=$\frac{π}{3}$,則x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,|${\overrightarrow{BA}}$|=1,|${\overrightarrow{AC}}$|=2,且$\overrightarrow{BA}$與$\overrightarrow{AC}$的夾角為$\frac{2π}{3}$,則BC邊上的中線AD的長為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a,b∈R,則“a>1,b>1”是“a+b>2”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大;
(Ⅱ)若a=4,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若關(guān)于x的不等式(a-1)x2+2(a-1)x-4≥0的解集為∅,則實(shí)數(shù)a的取值范圍是{a|-3<a≤1}.

查看答案和解析>>

同步練習(xí)冊答案