16.已知數(shù)列{an}各項都為正數(shù),且a1=e,lnan+1-lnan=1(n∈N*
(1)求數(shù)列{lnan}的通項公式;
(2)令bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

分析 (1)lna1=lne=1.lnan+1-lnan=1(n∈N*),數(shù)列{lnan}是以1為首項,公差是1的等差數(shù)列.即可得出.
(2)bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂項求和”方法即可得出.

解答 解:(1)∵lna1=lne=1.
∵lnan+1-lnan=1(n∈N*),
∴數(shù)列{lnan}是以1為首項,公差是1的等差數(shù)列.
∴l(xiāng)nan=1+(n-1)=n.
(2)bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴數(shù)列{bn}的前n項和Sn=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點評 本題考查了等差數(shù)列的通項公式、對數(shù)的運算性質(zhì)、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.Rt△ABC的三個頂點在半徑為13的球面上,兩直角邊的長分別為6和8,則球心到平面ABC的距離是12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)是奇函數(shù),且當x>0時,f(x)=x2-2x+2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列四個命題:
①若x>0,則x>sinx恒成立;
②命題“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④命題“若a2+b2=0,則a=0且b=0”的逆否命題是“若a≠0或b≠0,則a2+b2≠0”
正確的是(  )
A.①④B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)當x∈[-1,1]時,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.
(3)設(shè)函數(shù)f(x)在區(qū)間[a,a+1]上的最小值為g(a),求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.數(shù)列{an}的前n項和為Sn=2n+1-2,數(shù)列{bn}是首項為a1,數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b2=4.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)若cn=$\frac{2}{{(n+1){b_n}}}$(n∈N*),求數(shù)列{cn}的前n項和Tn
(3)設(shè)dn=an•bn,數(shù)列{dn}的前n項和Mn,若Mn>2m-1恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.解下列關(guān)于x的不等式:
(1)-x2+2x-$\frac{2}{3}$>0;
(2)x2+(1-a)x-a<0,a∈R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=2x-$\frac{x}$,(b>0),證明:f(x)在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知x>0,y>0,且x+2y=xy,若x+2y>m2+2m恒成立,則xy的最小值為8,實數(shù)m的取值范圍為(-4,2).

查看答案和解析>>

同步練習冊答案