分析 (1)先證明BC⊥平面ACD,再由BC∥ED,得出ED⊥平面ACD;
(2)由V三棱錐C-ADE=V三棱錐E-ACD,利用基本不等式求出三棱錐C-ADE體積的最大值,再利用三棱錐的體積公式計(jì)算點(diǎn)C到平面ADE的距離.
解答 解:(1)證明:∵AB是圓O的直徑,
∴AC⊥BC,
又DC⊥平面ABC,BC?平面ACD,
∴DC⊥BC,
又AC∩DC=D,
AC?平面ACD,DC?平面ACD,
∴BC⊥平面ACD;
又四邊形CBED為矩形,
∴BC∥ED,
∴ED⊥平面ACD;
(2)解:由(1)知,
V三棱錐C-ADE=V三棱錐E-ACD
=$\frac{1}{3}$S△ACD•DE
=$\frac{1}{3}$•$\frac{1}{2}$•AC•CD•DE
=$\frac{1}{6}$•AC•BC≤$\frac{1}{12}$•(AC2+BC2)=$\frac{1}{12}$•AB2=$\frac{1}{12}$×42=$\frac{4}{3}$,
當(dāng)且僅當(dāng)AC=BC=2$\sqrt{2}$時(shí)等號(hào)成立;
∴當(dāng)AC=BC=2$\sqrt{2}$時(shí),三棱錐C-ADE的體積最大,為$\frac{4}{3}$;
此時(shí),AD=$\sqrt{{1}^{2}{+(2\sqrt{2})}^{2}}$=3,
S△ADE=$\frac{1}{2}$•AD•DE=3$\sqrt{2}$,
設(shè)點(diǎn)C到平面ADE的距離為h,則
V三棱錐C-ADE=$\frac{1}{3}•$S△ADE•h=$\frac{4}{3}$;
∴h=$\frac{4}{3}$÷($\frac{1}{3}$×3$\sqrt{2}$)=$\frac{2\sqrt{2}}{3}$.
點(diǎn)評 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了錐體體積的計(jì)算問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3+i | B. | -1+3i | C. | -3-i | D. | -1-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a<b<c | C. | a<c<b | D. | b<c<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com