13.復(fù)數(shù)z=(3+2i)i,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)的乘法運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù),得到對(duì)應(yīng)點(diǎn)的坐標(biāo),即可.

解答 解:復(fù)數(shù)z=(3+2i)i=-2+3i,
復(fù)數(shù)的對(duì)應(yīng)點(diǎn)的坐標(biāo)(-2,3)在第二象限.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的除乘法的運(yùn)算法則,復(fù)數(shù)的幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線C:y2=4x的焦點(diǎn)為F,定點(diǎn)A(0,-2),若射線FA與拋物線C交于點(diǎn)M,與拋物線C的準(zhǔn)線交于點(diǎn)N,則|MN|:|FN|的值是( 。
A.($\sqrt{5}$-2):$\sqrt{5}$B.2:$\sqrt{5}$C.1:2$\sqrt{5}$D.$\sqrt{5}$:(1+$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=|x-a|,(a∈R).
(Ⅰ)當(dāng)-2≤x≤3時(shí),f(x)≤4成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若存在實(shí)數(shù)x,使得f(x-a)-f(x+a)≤2a-1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)P(2,0),點(diǎn)N到原點(diǎn)O與到點(diǎn)M(3,0)的距離之比為$\frac{1}{2}$,點(diǎn)N的軌跡為曲線C.
(1)求過點(diǎn)P且與曲線C相切的直線的方程;
(2)若過原點(diǎn)O的直線l與曲線C相交于不同的兩點(diǎn)A,B,求△PAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓O:x2+y2=13,經(jīng)過圓O上任P一點(diǎn)作y軸的垂線,垂足為Q,求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若a=2bsinA,則B為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S1、a3、S3成等差數(shù)列,且a2+a3+a4=15,若Sn-1600≥0,則n的最小值為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=xlnx+8在區(qū)間(0,3]的極小值為-$\frac{1}{e}$+8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z滿足z-i=3+i,則i•$\overline z$=( 。
A.3+2iB.2+3iC.3-2iD.-2+3i

查看答案和解析>>

同步練習(xí)冊(cè)答案