A. | $\frac{1}{2}$ | B. | $\frac{π^2}{4}$ | C. | $\frac{π^2}{2}$ | D. | $\frac{π^2}{4}+1$ |
分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,可得切線的方程,求得x,y軸的截距,運用三角形的面積公式,計算即可得到所求值.
解答 解:f(x)=x+sinx,則f'(x)=1+cosx,
則$f'(\frac{π}{2})=1$,而$f(\frac{π}{2})=\frac{π}{2}+1$,
故切線方程為$y-(\frac{π}{2}+1)=x-\frac{π}{2}$.
令x=0,可得y=1;令y=0,可得x=-1.
故切線與兩坐標(biāo)圍成的三角形面積為$\frac{1}{2}×1×1=\frac{1}{2}$.
故選A.
點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,以及直線方程的運用,正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2x | B. | y=2x | C. | y=lgx | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | 2+i | C. | 4-i | D. | 4+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | b<c<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com