10.集合A={x|x2-2x-3≤0},B={x||x|≤1},則A∩(∁RB)=( 。
A.{x|-1≤x≤3}B.{x|1≤x≤3}C.{x|-1≤x≤1}D.{x|1<x≤3}

分析 求出A與B中不等式的解集確定出A與B,根據(jù)全集R求出B的補集,找出A與B補集的交集即可.

解答 解:由A中不等式變形得:(x-3)(x+1)≤0,解得-1≤x≤3,即A={x|-1≤x≤3},
由B中不等式解得:-1≤x≤1,即B={x|-1≤x≤1},
∴∁RB={x|x<-1或x>1},
則A∩(∁RB)={x|1<x≤3}.
故選:D.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(α>b>0)的左、右焦點為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓的方程;
(2)設直線l過橢圓的右焦點F2(l不垂直于坐標軸),且與橢圓交干A,B兩點,線段AB的垂直平分線交x軸于點M(0,n),試求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知以角C為鈍角的三角形ABC內(nèi)角A、B、C的對邊分別為a、b、c,$\vec m$=(a,2c),$\vec n$=($\sqrt{3}$,-sinA),且$\vec m$與$\vec n$垂直.
(1)求角C的大;
(2)求cosA+cosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知橢圓的方程為$\frac{x^2}{a^2}$+y2=1(a>1),上頂點為A,左頂點為B,設P為橢圓上一點,則△PAB的最大值為$\sqrt{2}$+1.若已知M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),點Q為橢圓上任意一點,則$\frac{1}{{|{QN}|}}$+$\frac{4}{{|{QM}|}}$的最小值為(  )
A.2B.$\frac{9}{4}$C.3D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=kex-1-x+$\frac{1}{2}$x2(k為常數(shù)),曲線y=f(x)在點(0,f(0))處的切線與x軸平行,則f(x)的單調(diào)遞減區(qū)間為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知命題p:?x∈R,x-2>lgx,命題q:?x∈R,ex>x,則( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是真命題D.命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設i是虛數(shù)單位,若復數(shù)a+$\frac{15}{3-4i}$(a∈R)是純虛數(shù),則a的值為( 。
A.-$\frac{9}{5}$B.-$\frac{12}{5}$C.$\frac{12}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.以下有關命題的說法錯誤的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.若a∈R,則“a=2”是“(a-1)(a-2)=0”的充分且不必要條件
C.對于命題p:?x0∈R,使得x02+x0+1<0,則¬p:?x∈R,則x2+x+1≥0
D.命題“若am2<bm2,則a<b”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知現(xiàn)在我國人口年平均增長率為1.5%,設現(xiàn)有人口達到或超過總數(shù)為13億.設計算法求多少年后人口數(shù)將達到或超過15億.

查看答案和解析>>

同步練習冊答案