10.已知AB為圓O:(x-1)2+y2=1的直徑,點P為直線x-y+1=0上任意一點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為1.

分析 由AB為圓O:(x-1)2+y2=1的直徑,可設(shè)A(1+cosθ,sinθ),B(1-cosθ,-sinθ).點P為直線x-y+1=0上任意一點,可設(shè)P(x,x+1).利用數(shù)量積運算性質(zhì)、二次函數(shù)的單調(diào)性即可得出.

解答 解:由AB為圓O:(x-1)2+y2=1的直徑,
可設(shè)A(1+cosθ,sinθ),B(1-cosθ,-sinθ).
∵點P為直線x-y+1=0上任意一點,可設(shè)P(x,x+1),
則$\overrightarrow{PA}$•$\overrightarrow{PB}$=(1+cosθ-x,sinθ-x-1)•(1-cosθ-x,-sinθ-x-1)=(1-x)2-cos2θ+(1+x)2-sin2θ=2x2+1≥1.
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為1,此時P(0,1).
故答案為:1.

點評 本題考查了圓的標準方程、數(shù)量積運算性質(zhì)、二次函數(shù)的單調(diào)性、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.cos91°cos29°-sin91°sin29°的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知一個無窮等比數(shù)列{an}的每一項都等于它以后各項和的k倍,則實數(shù)k的取值范圍是(-∞,-2]∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.方程x-1=$\sqrt{1{-y}^{2}}$表示的曲線是半圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱臺ABC-DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,
(Ⅰ)求證:BF⊥平面ACFD;
(Ⅱ)求二面角B-AD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.下表是某地區(qū)的一種傳染病與飲用水的調(diào)查表:
得病不得病合計
干凈水52466518
不干凈水94218312
合計146684830
判斷能否以99.9%的把握認為“該地區(qū)的傳染病與飲用不干凈的水有關(guān)”
參考數(shù)據(jù):
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an},公差d>0,前n項和為Sn,且a3+a4=20,a2•a5=91,數(shù)列{bn}的前n項和Tn=1-$\frac{1}{2}$bn
(1)求數(shù)列{an}的通項公式和前n項和Sn;
(2)求數(shù)列{bn}的通項公式;
(3)若cn=$\frac{{3}^{n}_{n}}{{a}_{n}•{a}_{n+1}}$,求證:數(shù)列{cn}的前n項和Hn<$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,頂點A(1,3),AB邊上的中線所在直線方程為x-y+1=0,AC邊上中線所在的直線方程為y-2=0,求△ABC各邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從區(qū)間[0,1]上隨機取一個實數(shù)a,則關(guān)于x的一元二次方程x2-x+a=0無實根的概率為$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案