7.對(duì)于函數(shù)f(x)=$\frac{e^x}{{x}^{2}}$+lnx-$\frac{2k}{x}$,若f′(1)=1,則k=( 。
A.$\frac{e}{2}$B.$\frac{e}{3}$C.-$\frac{e}{2}$D.-$\frac{e}{3}$

分析 先根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo),再代值計(jì)算.

解答 解:f′(x)=$\frac{{e}^{x}(x-2)}{{x}^{3}}$+$\frac{1}{x}$+$\frac{2k}{{x}^{2}}$,
∴f′(1)=-e+1+2k=1,
解得k=$\frac{e}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)值的問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系中,已知圓C1:(x+2)2+y2=m2和圓C2:(x-2)2+y2=4-m2,其中m∈R,且0<m<2.
(I)若m=1,求直線(xiàn)x-$\sqrt{3}$y+1=0被圓C1截得的弦長(zhǎng);
(Ⅱ)過(guò)點(diǎn)P(0,b)作直線(xiàn)l,使圓C1和圓C2在l的兩側(cè),且均與1相切,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示,在直三棱柱ABC-A'B'C'中,AC⊥BC,BC=BB'=2,AC=4,點(diǎn)M是線(xiàn)段AB'的中點(diǎn),則三棱錐M-ABC的外接球的體積是( 。
A.36πB.$\frac{{20\sqrt{5}}}{3}$πC.$\sqrt{6}$πD.$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求下列雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
(1)與雙曲線(xiàn)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦點(diǎn),且過(guò)點(diǎn)(3$\sqrt{2}$,2)的雙曲線(xiàn);
(2)以橢圓3x2+13y2=39的焦點(diǎn)為焦點(diǎn),以直線(xiàn)y=±$\frac{x}{2}$為漸近線(xiàn)的雙曲線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求函數(shù)f(x)=2-$\frac{3}{\sqrt{{x}^{2}-4x+5}}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)命題p:x2-5x+6≤0;命題q:(x-m)(x-m-2)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)$\frac{2-ai}{1+i}$(a∈R)是純虛數(shù),i是虛數(shù)單位,則a的值是( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.用一個(gè)與球心距離為1的平面去截球,所得截面的面積為π,則球的表面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知2cos(B-C)=1+4sinBsinC.
(1)求角A的大;
(2)若a=2$\sqrt{7}$,△ABC的面積2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案