12.設(shè)命題p:x2-5x+6≤0;命題q:(x-m)(x-m-2)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

分析 利用一元二次不等式的解法分別解出:命題p與命題q的x的取值范圍.由¬p是¬q的必要不充分條件,可得p是q的充分不必要條件.即可得出.

解答 解:命題p:x2-5x+6≤0,解得2≤x≤3;
命題q:(x-m)(x-m-2)≤0,解得m≤x≤m+2.
∵¬p是¬q的必要不充分條件,∴p是q的充分不必要條件.
∴$\left\{\begin{array}{l}{m≤2}\\{m+2>3}\end{array}\right.$,或$\left\{\begin{array}{l}{m<2}\\{m+2≥3}\end{array}\right.$,
解得1≤m≤2.
∴實(shí)數(shù)m的取值范圍是[1,2].

點(diǎn)評(píng) 本題考查了一元二次不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的偶函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),對(duì)定義域內(nèi)的任意x,都有2f(x)+xf'(x)<2成立,則使得x2f(x)-4f(2)<x2-4成立的x的范圍為(  )
A.{x|x≠±2}B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax3+bx2+cx+d的導(dǎo)函數(shù)f'(x)的圖象如圖所示,則f(x)的圖象最有可能的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在極坐標(biāo)系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,C與l有且只有一個(gè)公共點(diǎn),求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)于函數(shù)f(x)=$\frac{e^x}{{x}^{2}}$+lnx-$\frac{2k}{x}$,若f′(1)=1,則k=( 。
A.$\frac{e}{2}$B.$\frac{e}{3}$C.-$\frac{e}{2}$D.-$\frac{e}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)U=R,A={x|x<1},B={x|x>m}.
(1)若∁UA⊆B,求實(shí)數(shù)m的取值范圍;
(2)若∁UA?B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.因式分解:2x2-x-5=2(x-$\frac{1-\sqrt{41}}{4}$)(x-$\frac{1+\sqrt{41}}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知矩形ABCD的頂點(diǎn)都在球O的球面上,AB=6,BC=2$\sqrt{3}$,四棱錐O-ABCD的體積為8$\sqrt{3}$,則球O的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等比數(shù)列{an}中,an=54.前n項(xiàng)和前2n項(xiàng)和分別為Sn=80,S2n=6560.
(1)求首項(xiàng)a1和公比q;
(2)若A1=$\frac{π}{4}$,數(shù)列{An}滿足An-An-1=a1•$\frac{π}{6}$,(n≥2),設(shè)cn=tanAntanAn-1.求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案