科目: 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點.
(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在四棱錐中,底面是矩形,,,,是棱的中點.
(1)求證:平面;
(2)求證:平面;
(3)在棱上是否存在一點,使得平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖1,在Rt△ABC中,∠ABC=90°,D為AC中點,于(不同于點),延長AE交BC于F,將△ABD沿BD折起,得到三棱錐,如圖2所示.
(1)若M是FC的中點,求證:直線//平面;
(2)求證:BD⊥;
(3)若平面平面,試判斷直線與直線CD能否垂直?并說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是,邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,三棱柱的底面是邊長為2的正三角形,且側棱垂直于底面,側棱長是,D是AC的中點。
(1)求證:平面;
(2)求二面角的大;
(3)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
在四棱柱中,底面,底面為菱形,為與交點,已知,.
(1)求證:平面;
(2)求證:∥平面;
(3)設點在內(含邊界),且,說明滿足條件的點的軌跡,并求的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知多面體ABCDFE中, 四邊形ABCD為矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分別為AB、FC的中點,且AB = 2,AD =" EF" = 1.
(1)求證:AF⊥平面FBC;
(2)求證:OM∥平面DAF;
(3)設平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖一,平面四邊形關于直線對稱,.把沿折起(如圖二),使二面角的余弦值等于.對于圖二,完成以下各小題:
(1)求兩點間的距離;
(2)證明:平面;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com