相關(guān)習(xí)題
 0  153580  153588  153594  153598  153604  153606  153610  153616  153618  153624  153630  153634  153636  153640  153646  153648  153654  153658  153660  153664  153666  153670  153672  153674  153675  153676  153678  153679  153680  153682  153684  153688  153690  153694  153696  153700  153706  153708  153714  153718  153720  153724  153730  153736  153738  153744  153748  153750  153756  153760  153766  153774  266669 

科目: 來(lái)源: 題型:解答題

如圖,在幾何體ABCDE中,ABAD=2,ABAD,AE⊥平面ABD,M為線段BD的中點(diǎn),MCAE,且AEMC.

(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點(diǎn),求證:平面AMN∥平面BEC.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

在四棱錐PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PAAB=4,點(diǎn)N在線段PB上,且.

(1)求證:BDPC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCDl,試問(wèn)直線l是否與直線CD平行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)為的正方體中,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上,且滿足.

(1)求證:
(2)在棱上確定一點(diǎn),使、、四點(diǎn)共面,并求此時(shí)的長(zhǎng);
(3)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是銳角,且平面ACEF⊥平面ABCD.

(1)求證:;
(2)試判斷直線DF與平面BCE的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是銳角,且平面ACEF⊥平面ABCD.

(1)求證:;
(2)若直線DE與平面ACEF所成的角的正切值是,試求的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,多面體ABCA1B1C1中,三角形ABC是邊長(zhǎng)為4的正三角形,AA1BB1CC1,AA1⊥平面ABCAA1BB1=2CC1=4.

(1)若OAB的中點(diǎn),求證:OC1A1B1
(2)在線段AB1上是否存在一點(diǎn)D,使得CD∥平面A1B1C1,若存在,確定點(diǎn)D的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,三棱柱ABCA1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),FAB的中點(diǎn),ACBC=1,AA1=2.

(1)求證:CF∥平面AB1E;
(2)求三棱錐CAB1E在底面AB1E上的高.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,已知四棱錐PABCD的底面為直角梯形,ABCD,∠DAB=90°,PA⊥底面ABCD,且PAADDCAB=1,MPB的中點(diǎn).

(1)求證:AMCM;
(2)若NPC的中點(diǎn),求證:DN∥平面AMC.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖,在三棱柱ABCA1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1A1CAC=2,ABBC,ABBC,OAC中點(diǎn).
 
(1)證明:A1O⊥平面ABC;
(2)若E是線段A1B上一點(diǎn),且滿足VEBCC1·VABCA1B1C1,求A1E的長(zhǎng)度.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖1,在直角梯形ABCD中,ADBC,∠ADC=90°,BABC.把△BAC沿AC折起到△PAC的位置,使得點(diǎn)P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點(diǎn)E、F分別為棱PC,CD的中點(diǎn).
 
(1)求證:平面OEF∥平面APD;
(2)求證:CD⊥平面POF;
(3)在棱PC上是否存在一點(diǎn)M,使得MP,O,CF四點(diǎn)距離相等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案