相關(guān)習(xí)題
 0  197981  197989  197995  197999  198005  198007  198011  198017  198019  198025  198031  198035  198037  198041  198047  198049  198055  198059  198061  198065  198067  198071  198073  198075  198076  198077  198079  198080  198081  198083  198085  198089  198091  198095  198097  198101  198107  198109  198115  198119  198121  198125  198131  198137  198139  198145  198149  198151  198157  198161  198167  198175  266669 

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

休閑方式

性別

看電視

看書(shū)

合計(jì)

10

50

60

10

10

20

合計(jì)

20

60

80

 

(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書(shū)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;

(2)根據(jù)以上數(shù)據(jù),我們能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“在20:00-22:00時(shí)間段居民的休閑方式與性別有關(guān)系”?

參考公式:K2=,其中n=a+b+c+d.

參考數(shù)據(jù):

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

 

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.

(1)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;

(2)求此人在該市停留期間只有1天空氣重度污染的概率;

(3)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

 

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

為備戰(zhàn)2016年奧運(yùn)會(huì),甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績(jī)中隨機(jī)抽取8次,記錄如下:

甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3

乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5

(1)畫(huà)出甲、乙兩位選手成績(jī)的莖葉圖;

(2)現(xiàn)要從中選派一人參加奧運(yùn)會(huì)封閉集訓(xùn),從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位選手參加合理?簡(jiǎn)單說(shuō)明理由;

(3)若將頻率視為概率,對(duì)選手乙在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ).

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

如圖所示,已知橢圓E經(jīng)過(guò)點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過(guò)點(diǎn)A(2,3).

(1)求橢圓E的方程;

(2)在橢圓E上是否存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)?若存在,請(qǐng)找出;若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤(rùn)與該轎車首次出現(xiàn)故障的時(shí)間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

 

 

 

首次出現(xiàn)故障時(shí)間x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤(rùn)(萬(wàn)元)

1

2

3

1.8

2.9

 

將頻率視為概率,解答下列問(wèn)題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車的利潤(rùn)為X2,分別求X1,X2的分布列;

(3)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說(shuō)明理由.

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);

(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).

甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)n

輸出y的值

為1的頻數(shù)

輸出y的值

為2的頻數(shù)

輸出y的值

為3的頻數(shù)

30

14

6

10

2 100

1 027

376

697

 

乙的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)n

輸出y的值

為1的頻數(shù)

輸出y的值

為2的頻數(shù)

輸出y的值

為3的頻數(shù)

30

12

11

7

2 100

1 051

696

353

 

當(dāng)n=2 100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;

(3)將按程序框圖正確編寫的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

在△ABC中,已知||=||=||=2,則向量·=(  )

A.2   B.-2   C.2   D.-2

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

已知等比數(shù)列{an},若存在兩項(xiàng)am,an使得am·an=a32,則的最小值為(  )

A. B. C. D.

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的(  )

A.BC∥平面PDF

B.DF⊥平面PAE

C.平面PDE⊥平面ABC

D.平面PAE⊥平面ABC

 

查看答案和解析>>

科目: 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

點(diǎn)M、N分別是正方體ABCD—A1B1C1D1的棱A1B1、A1D1的中點(diǎn),用過(guò)A、M、N和D、N、C1的兩個(gè)截面截去正方體的兩個(gè)角后得到的幾何體如下圖,則該幾何體的正(主)視圖、側(cè)(左)視圖、俯視圖依次為(  )

A.①②③ B.②③④

C.①③④ D.②④③

 

查看答案和解析>>

同步練習(xí)冊(cè)答案