相關習題
 0  201210  201218  201224  201228  201234  201236  201240  201246  201248  201254  201260  201264  201266  201270  201276  201278  201284  201288  201290  201294  201296  201300  201302  201304  201305  201306  201308  201309  201310  201312  201314  201318  201320  201324  201326  201330  201336  201338  201344  201348  201350  201354  201360  201366  201368  201374  201378  201380  201386  201390  201396  201404  266669 

科目: 來源: 題型:

如圖,直三棱柱ABC-A′B′C′中,AC=BC=5,AA′=AB=6,D、E分別為AB和BB′上的點,且
AD
DB
=
BE
EB′
=λ.
(1)求證:當λ=1時,A′B⊥CE;
(2)當λ為何值時,三棱錐A′-CDE的體積最小,并求出最小體積.

查看答案和解析>>

科目: 來源: 題型:

一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內盛有a升水時,水面恰好經過正四棱錐的頂點P,如果:將容器倒置,水面也恰好過點P有下列四個命題:
①正四棱錐的高等于正四棱柱的高的一半;
②若往容器內再注a升水,則容器恰好能裝滿;
③將容器側面水平放置時,水面恰好經過點P;
④任意擺放該容器,當水面靜止時,水面都恰好經過點P.
其中正確命題的序號為
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目: 來源: 題型:

在四棱錐P-ABCD中,AB⊥BC,AC⊥CD,AB=BC,∠ADc=60°(即:底面是一幅三角板拼成)
(1)若PA中點為E,求證:BE∥面PCD
(2)若PA=PB=PC=3,PD與面PAC成30°角,求此四棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式:f(-2x2+2x-3)>f(x2+4x+3)

查看答案和解析>>

科目: 來源: 題型:

若函數(shù)f(x)=
1
3
x3+ax2-2x在(a,+∞)是單調的,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax3+
a2-3
2
x2-ax+2,a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線與直線x-4y+8=0垂直,求a的值;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a為實常數(shù)).若f(x)在[2,+∞)上是單調函數(shù),則a的取值范圍是( 。
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目: 來源: 題型:

已知公差不為零的等差數(shù)列{an}的a2,a3,a14恰好構成一個等比數(shù)列,前7項和為S7=49,且對于任意的正整數(shù)n,都有b1+2b2+…+2n-1 bn=nan
(1)求數(shù)列{an},{bn}的通項公式.
(2)記{bn}的前n項和為Tn,求滿足Tn>9的n的集合.

查看答案和解析>>

科目: 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,a1=3,且3S1,2S2,S3成等差數(shù)列
(1)求數(shù)列{an}的通項公式
(2)設bn=log2an,求Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex-2x(e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調區(qū)間
(2)若存在x∈[
1
2
,2]
使不等式f(x)<mx成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案