相關(guān)習題
 0  207173  207181  207187  207191  207197  207199  207203  207209  207211  207217  207223  207227  207229  207233  207239  207241  207247  207251  207253  207257  207259  207263  207265  207267  207268  207269  207271  207272  207273  207275  207277  207281  207283  207287  207289  207293  207299  207301  207307  207311  207313  207317  207323  207329  207331  207337  207341  207343  207349  207353  207359  207367  266669 

科目: 來源: 題型:

已知函數(shù)f(x)為反比例函數(shù),且圖象經(jīng)過(-1,2),g(x)=x2-2x.
(1)求函數(shù)f[g(x)]的解析式與定義域;
(2)求函數(shù)f[g(x)]的值域;
(3)判斷并證明函數(shù)f[g(x)]在區(qū)間(2,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1
2
+lnx,g(x)=
1
2
x2
(1)若直線l與f(x)與g(x)都相切,求l的方程;
(2)若對任意x1>x2>0,不等式t[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

解下列不等式
(1)20122x-7≥20124x-1
(2)log0.2(x+1)≥log0.2(1-x).

查看答案和解析>>

科目: 來源: 題型:

已知集合A={x|m<x<2m-1,m∈R},B={x|x∈(-∞,2)∪[4,+∞)},若A∩B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d在(-∞,0]上為增函數(shù),在[0,6]上為減函數(shù),且方程f(x)=0的三個根分別為1,x1,x2
(1)求實數(shù)b的取值范圍;
(2)求x12-4x1x2+x22的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知A(-1,2)為曲線C:y=2x2上的點,直線l1過點A,且與曲線C相切,
直線l2:x=a(a>-1)交曲線C于B,交直線l1于點D.
(Ⅰ) 求直線l1的方程;
(Ⅱ)設(shè)△BAD的面積為S1,求S1的值;
(Ⅲ) 設(shè)由曲線C,直線l1,l2所圍成的圖形的面積為S2,求證S1:S2的值為與a無關(guān)的常數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f (x)=log4x+1,x∈[1,16],F(xiàn)(x)=f (x2)+f 2(x),求F(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
(Ⅰ)畫出散點圖;
(Ⅱ)求回歸直線方程;
(Ⅲ)試預(yù)測廣告費支出為10百萬元時,銷售額多大?
(可能用到的公式:
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x
,其中
?
a
、
?
b
是對回歸直線方程
y
=a+bx中系數(shù)a、b按最小二乘法求得的估計值)

查看答案和解析>>

科目: 來源: 題型:

家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員x名.
(1)若采用分層抽樣的方法隨機抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是16,求x的值.
(2)某客戶來公司聘請2名家政服務(wù)員,但是由于公司人員安排已接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇,求該客戶最終聘請的家政服務(wù)員中既有A類又有B類的概率.

查看答案和解析>>

科目: 來源: 題型:

化簡下列各式
(1)
tan1500cos(-5700)
sin(-6900)
;       
(2)
tan(π-α)sin(α+
π
2
)cos(2π-α)
cos(-π-α)tan(α-2π)

查看答案和解析>>

同步練習冊答案