相關(guān)習(xí)題
 0  208606  208614  208620  208624  208630  208632  208636  208642  208644  208650  208656  208660  208662  208666  208672  208674  208680  208684  208686  208690  208692  208696  208698  208700  208701  208702  208704  208705  208706  208708  208710  208714  208716  208720  208722  208726  208732  208734  208740  208744  208746  208750  208756  208762  208764  208770  208774  208776  208782  208786  208792  208800  266669 

科目: 來源: 題型:

我們已經(jīng)學(xué)過了等差數(shù)列,你是否想到過有沒有等和數(shù)列呢?
(1)類比“等差數(shù)列”給出“等和數(shù)列”的定義;
(2)探索等和數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)各有什么特點(diǎn)?并加以說明.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且x∈[0,+∞)時(shí),f(x)=x(1-x),求f(x)在R上的解析式.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C1的中心為原點(diǎn)O,離心率e=
2
2
,其一個(gè)焦點(diǎn)在拋物線C2:y2=2px的準(zhǔn)線上,若拋物線C2與直線l:x-y+
6
=0相切.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)T滿足:
OT
=
MN
+2
OM
+
ON
,其中M,N是C1上的點(diǎn),直線OM與ON的斜率之積為-
1
2
,試說明:是否存在兩個(gè)定點(diǎn)F1,F(xiàn)2,使得|TF1|+|TF2|為定值?若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

紅隊(duì)隊(duì)員甲、乙與藍(lán)隊(duì)隊(duì)員A、B進(jìn)行圍棋比賽,甲對(duì)A、乙對(duì)B各比一盤.已知甲勝A,乙勝B的概率分別為0.6、0.5.假設(shè)各盤比賽結(jié)果相互獨(dú)立.
(1)求紅隊(duì)至少一名隊(duì)員獲勝的概率;
(2)用ξ表示紅隊(duì)隊(duì)員獲勝的總盤數(shù),求ξ的分布列.

查看答案和解析>>

科目: 來源: 題型:

巳知橢圓C:
x2
a2
+
y2
b2
=1與雙曲線
x2
2
-y2=1有公共焦點(diǎn),且離心率為
3
2
.A、B分別是橢圓C的左頂點(diǎn)和右頂點(diǎn).點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn).直線AS,BS分別與直線l:x=
10
3
分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)試判斷以SM為直徑的圓是否過點(diǎn)B,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=aln(x+1)+
1
2
x2-ax+1(a>0).
(1)求函數(shù)y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)a>1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)雙曲線S:
x2
a2
-
y2
b2
=1,M(x0,y0)∉S,且x0y0≠0.N(λx0,λy0),其中
1
λ
=
x02
a2
-
y02
b2
.過點(diǎn)N的直線L交雙曲線S于A,B兩點(diǎn),過點(diǎn)B作斜率為
b2x0
a2y0
的直線交雙曲線S于點(diǎn)C.求證:A,M,C三點(diǎn)共線.

查看答案和解析>>

科目: 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+|x|;
(2)f(x)=x2+x+1.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
a2
=1(a>b>0)的長(zhǎng)軸的一個(gè)端點(diǎn)為A(2,0),離心率為
2
2
.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)B、D
(1)求橢圓C的方程;
(2)是否存在這樣的直線,使得△ABD的面積為
10
3
,若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=ax-2-lnx(a∈R),當(dāng)x>0時(shí),求證f(x)-ax+ex>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案