相關習題
 0  224618  224626  224632  224636  224642  224644  224648  224654  224656  224662  224668  224672  224674  224678  224684  224686  224692  224696  224698  224702  224704  224708  224710  224712  224713  224714  224716  224717  224718  224720  224722  224726  224728  224732  224734  224738  224744  224746  224752  224756  224758  224762  224768  224774  224776  224782  224786  224788  224794  224798  224804  224812  266669 

科目: 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,t),且$\overrightarrow{a}∥\overrightarrow$,則實數(shù)t=4.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f[f(x+6)],(x<10)}\end{array}\right.$,則f(4)的值為(  )
A.10B.11C.12D.13

查看答案和解析>>

科目: 來源: 題型:解答題

15.若函數(shù)f(x)為定義在R上的奇函數(shù),且x>0時,f(x)=lg(x+1)
(1)求f(x)的解析式,并畫出大致圖象;
(2)若對于任意t∈R,不等式f(t2-2t)+f(k-2t2)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3^{x+1}}(x≤0)\\{log_2}x(x>0)\end{array}$,則不等式f(x)>3的解集為( 。
A.(8,+∞)B.(-∞,0)∪(8,+∞)C.(0,8)D.(-∞,0)∪(0,8)

查看答案和解析>>

科目: 來源: 題型:選擇題

13.體積為$\frac{4}{3}π$的球O放置在棱長為4的正方體ABCD-A1B1C1D1上,且與上表面A1B1C1D1相切,切點為該表面的中心,則四棱錐O-ABCD的外接球的半徑為(  )
A.$\frac{10}{3}$B.$\frac{33}{10}$C.$\frac{23}{6}$D.$\frac{41}{12}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知命題p:方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{4-k}$=1表示焦點在x軸上的橢圓,命題q:(k-1)x2+(k-3)y2=1表示雙曲線.若p∨q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.角-420°終邊上有一異于原點的點(4,-a),則a的值是( 。
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.±4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知函數(shù)f(x)=lnx-$\frac{m}{x}$(m∈R)在區(qū)間[1,e]上取得最小值4,則m=( 。
A.-3eB.-1C.-e3D.e2

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(1)求實數(shù)a、b的值;
(2)若不等式$f({log_2}k)>f(\frac{3}{2})$成立,求實數(shù)k的取值范圍;
(3)對于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N,n≥3)的自變量x0,x1,x2,…,xn-1,xn,如果存在一個常數(shù)M>0,使得定義在區(qū)間[p,q]上的一個函數(shù)m(x),有|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱m(x)為區(qū)間[p,q]上的有界變差函數(shù),試判斷f(x)是否區(qū)間[0,3]上的有界變差函數(shù),若是,求出M的最小值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知函數(shù)f(x)=(x-1)(x-2)(x-3),且在點(i,f(i))處的切線的斜率為ki(i=1,2,3).則$\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}$=0.

查看答案和解析>>

同步練習冊答案