相關(guān)習(xí)題
 0  224830  224838  224844  224848  224854  224856  224860  224866  224868  224874  224880  224884  224886  224890  224896  224898  224904  224908  224910  224914  224916  224920  224922  224924  224925  224926  224928  224929  224930  224932  224934  224938  224940  224944  224946  224950  224956  224958  224964  224968  224970  224974  224980  224986  224988  224994  224998  225000  225006  225010  225016  225024  266669 

科目: 來源: 題型:選擇題

18.在等比數(shù)列{an}中,若公比q=4,S3=21,則該數(shù)列的通項公式an=( 。
A.4n-1B.4nC.3nD.3n-1

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知復(fù)數(shù)z1=3-i,z2=1+i,$\overline{{z}_{1}}$是z1的共軛復(fù)數(shù),則$\frac{\overline{{z}_{1}}}{{z}_{2}}$=( 。
A.1+iB.1-iC.2+iD.2-i

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖,在正四棱柱中ABCD-A1B1C1D1,AB=1,D1B和平面ABCD所成的角的大小為$arctan\frac{{3\sqrt{2}}}{4}$,求該四棱柱的表面積.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知點A(1,0),直線l:x=-1,兩個動圓均過點A且與l相切,其圓心分別為C1、C2,若動點M滿足$2\overrightarrow{{C_2}M}=\overrightarrow{{C_2}{C_1}}+\overrightarrow{{C_2}A}$,則M的軌跡方程為y2=2x-1.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點為F1,F(xiàn)2,點$P({\sqrt{2},\;1})$在C上,且PF2⊥x軸.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=x+m與橢圓C交于不同的兩點A,B,原點O在以AB為直徑的圓外,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.平面向量$\vec a$與$\vec b$的夾角為60°,$\vec a=(3,\;4)$,$|{\vec b}|=1$,則$|{\vec a-2\vec b}|$=( 。
A.$\sqrt{19}$B.$2\sqrt{6}$C.$\sqrt{34}$D.$\sqrt{39}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)F1、F2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦點,若橢圓上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則橢圓離心率為( 。
A.$\frac{{\sqrt{5}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{4}$D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}}$+k($\frac{2}{x}$+lnx)(k為常數(shù)).
(1)當(dāng)k=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)k≥0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知圓F1:(x+1)2+y2=1,圓F2:(x-1)2+y2=25,動圓P與圓F1外切并且與圓F2內(nèi)切,動圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若曲線C與x軸的交點為A1,A2,點M是曲線C上異于點A1,A2的點,直線A1M與A2M的斜率分別為k1,k2,求k1k2的值.
(Ⅲ)過點(2,0)作直線l與曲線C交于A,B兩點,在曲線C上是否存在點N,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$?若存在,請求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.橢圓滿足這樣的光學(xué)性質(zhì):從橢圓的一個焦點發(fā)射光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點.現(xiàn)在設(shè)有一個水平放置的橢圓形臺球盤,滿足方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,點A、B是它的兩個焦點,當(dāng)靜止的小球放在A處,從點A沿直線出發(fā),經(jīng)橢圓壁反彈后,再回到點A時,小球經(jīng)過的路程是( 。
A.20B.18C.2D.以上均有可能

查看答案和解析>>

同步練習(xí)冊答案