相關(guān)習(xí)題
 0  227629  227637  227643  227647  227653  227655  227659  227665  227667  227673  227679  227683  227685  227689  227695  227697  227703  227707  227709  227713  227715  227719  227721  227723  227724  227725  227727  227728  227729  227731  227733  227737  227739  227743  227745  227749  227755  227757  227763  227767  227769  227773  227779  227785  227787  227793  227797  227799  227805  227809  227815  227823  266669 

科目: 來(lái)源: 題型:選擇題

19.與25°角終邊相同的角是( 。
A.385°B.-325°C.335°D.-685°

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.如圖,在同一平面內(nèi),∠AOB=150°,∠AOC=120°,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=3,|$\overrightarrow{OC}$|=4.
(1)試用$\overrightarrow{OB}$和$\overrightarrow{OC}$表示$\overrightarrow{OA}$;
(2)是否存在實(shí)數(shù)λ,使得$\overrightarrow{AD}$=$λ\overrightarrow{AC}$,$\overrightarrow{AC}$$•\overrightarrow{BD}$=0同時(shí)成立?若存在,求出λ的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+4n,數(shù)列{bn}的通項(xiàng)公式為bn=2n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知sinx=-1,則角x等于( 。
A.$\frac{3π}{2}$B.kπ(k∈Z)C.2kπ-$\frac{π}{2}$(k∈Z)D.2(k+1)π+$\frac{3π}{2}$(k∈Z)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.已知$\overrightarrow{a}$=(2,2$\sqrt{3}$-4),$\overrightarrow$=(1,1),則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

14.log0.8m>log0.8n,則m,n滿足0<m<n.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知等差數(shù)列{an}的n項(xiàng)和為Sn,滿足S5=-15,$\frac{3}{7}$<d<$\frac{1}{2}$,當(dāng)Sn取得最小值時(shí)n的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.設(shè)平面向$\overline{a}$=(sinx,cosx),$\overrightarrow$=($\sqrt{3}$,-1).
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求tan(2x+$\frac{π}{4}$)的值;
(2)若x∈[0,π],求|$\overrightarrow{a}-\overrightarrow$|的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.已知AB為圓C的弦,C為圓心,且|$\overrightarrow{AB}$|=2,則$\overrightarrow{AB}$$•\overrightarrow{AC}$=( 。
A.-2B.2C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.化簡(jiǎn):
(1)$\frac{\sqrt{1-2sin20°cos20°}}{sin20°-\sqrt{1-si{n}^{2}20°}}$;
(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$;
(3)sin2α+cos2β-sin2αcos2β+cos2αsin2β

查看答案和解析>>

同步練習(xí)冊(cè)答案