相關(guān)習題
 0  227635  227643  227649  227653  227659  227661  227665  227671  227673  227679  227685  227689  227691  227695  227701  227703  227709  227713  227715  227719  227721  227725  227727  227729  227730  227731  227733  227734  227735  227737  227739  227743  227745  227749  227751  227755  227761  227763  227769  227773  227775  227779  227785  227791  227793  227799  227803  227805  227811  227815  227821  227829  266669 

科目: 來源: 題型:解答題

2.如圖,C,D是以AB為直徑的圓上的兩點,AB=2AD=2$\sqrt{3}$,AC=BC,F(xiàn)是AB上的一點,且AF=$\frac{1}{3}$AB,將圓沿AB折起,使點C在平面ABD的正投影E在線段BD上,已知CE=$\sqrt{2}$,平面EFMN分別交AC、DC于點M、N.
(1)求證:AD⊥平面BCE;
(2)求證:AD∥MN;
(3)求三棱錐A-CFD的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

1.四面體的一條棱長為x,其它各棱長均為1,若把四面體的體積V表示成關(guān)于x的函數(shù)V(x),則函數(shù)V(x)的單調(diào)遞減區(qū)間是($\frac{\sqrt{6}}{2},\sqrt{3}$).

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖1,在矩形ABCD中,AB=$\sqrt{3}$,BC=4,E是邊AD上一點,且AE=3,把△ABE沿BE翻折,使得點A到A′,滿足平面A′BE與平面BCDE垂直(如圖2).
(1)若點P在棱A′C上,且CP=3PA′,求證:DP∥平面A′BE;
(2)求二面角B-A′E-D的余弦值的大。

查看答案和解析>>

科目: 來源: 題型:填空題

19.下列說法中:
①任取x1,x2∈I(區(qū)間),當x1<x2時,f (x1)<f (x2),則y=f (x)在I上是增函數(shù);
②函數(shù)y=x2在R上是增函數(shù);
③函數(shù)y=$\left\{\begin{array}{l}{x+3,x≥0}\\{-{x}^{2},x<0}\end{array}\right.$在定義域上是增函數(shù);
④y=$\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞).
正確的序號為①③.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若α,β都是銳角,且$sinα=\frac{2\sqrt{5}}{5},sin(α-β)=\frac{\sqrt{10}}{10}$,則cosβ=( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{2}$或$-\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx,g(x)=ex,其中e是白然對數(shù)的底數(shù),e=2.71828…
(I)若函數(shù)φ(x)=f(x)-$\frac{x+1}{x-1}$求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)f(x)的圖象上一點A(x0,f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知三角形OAB三頂點坐標分別為(0,0)、(2,0)、(0,2),直線y=k(x-a)將三角形OAB分成面積相等的兩部分,若0≤a≤1,則實數(shù)k的取值范圍是[1,+∞)∪(-∞,-2].

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知冪函數(shù)y=f(x)圖象過點(9,3),則${∫}_{0}^{1}$f(x)dx等于$\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知f(x)=x2-3,g(x)=mex,若方程f(x)=g(x)有三個不同的實根,則m的取值范圍是( 。
A.$(0,\frac{6}{e^3})$B.$(-3,\frac{6}{e^3})$C.$(-2e,\frac{6}{e^3})$D.(0,2e)

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{|x|}{x+2}$,如果關(guān)于x的方程f(x)=kx2有四個不同的實數(shù)解,則k的取值范圍是( 。
A.k>1B.k≥1C.0<k<1D.0<k≤1

查看答案和解析>>

同步練習冊答案