17.已知函數(shù)f(x)=lnx,g(x)=ex,其中e是白然對(duì)數(shù)的底數(shù),e=2.71828…
(I)若函數(shù)φ(x)=f(x)-$\frac{x+1}{x-1}$求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)f(x)的圖象上一點(diǎn)A(x0,f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

分析 (Ⅰ)求導(dǎo)函數(shù),確定導(dǎo)數(shù)恒大于0,從而可得求函數(shù)φ (x)的單調(diào)區(qū)間;
(Ⅱ)先求直線l為函數(shù)的圖象上一點(diǎn)A(x0,f (x0))處的切線方程,再設(shè)直線l與曲線y=g(x)相切于點(diǎn)(x1,${e}^{{x}_{1}}$),進(jìn)而可得lnx0=$\frac{{x}_{0}+1}{{x}_{0}-1}$,再證明在區(qū)間(1,+∞)上x0存在且唯一即可.

解答 (Ⅰ)解:φ(x)=f(x)-$\frac{x+1}{x-1}$=lnx-$\frac{x+1}{x-1}$,φ′(x)=$\frac{1}{x}$+$\frac{2}{(x-1)^{2}}$,
∵x>0且x≠1,∴φ'(x)>0,
∴函數(shù)φ(x)的單調(diào)遞增區(qū)間為(0,1)和(1,+∞);
(Ⅱ)證明:∵f′(x)=$\frac{1}{x}$,∴f′(x0)=$\frac{1}{{x}_{0}}$,
∴切線l的方程為y-lnx0=$\frac{1}{{x}_{0}}$(x-x0),
即y=$\frac{1}{{x}_{0}}$•x+lnx0-1,①
設(shè)直線l與曲線y=g(x)相切于點(diǎn)(x1,${e}^{{x}_{1}}$),
∵g'(x)=ex,∴${e}^{{x}_{1}}$=$\frac{1}{{x}_{0}}$,∴x1=-lnx0
∴直線l也為y-$\frac{1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$(x+lnx0),
即y=$\frac{1}{{x}_{0}}$•x+$\frac{ln{x}_{0}}{{x}_{0}}$+$\frac{1}{{x}_{0}}$,②
由①②得lnx0-1=$\frac{ln{x}_{0}}{{x}_{0}}$+$\frac{1}{{x}_{0}}$,
∴l(xiāng)nx0=$\frac{{x}_{0}+1}{{x}_{0}-1}$.
下證:在區(qū)間(1,+∞)上x0存在且唯一.
由(Ⅰ)可知,φ(x)=lnx-$\frac{x+1}{x-1}$在區(qū)間(1,+∞)上遞增.
又φ(e)=lne-$\frac{e+1}{e-1}$=$\frac{-2}{e-1}$<0,φ(e2)=lne2-$\frac{{e}^{2}+1}{{e}^{2}-1}$=$\frac{{e}^{2}-3}{{e}^{2}-1}$>0,
結(jié)合零點(diǎn)存在性定理,說明方程φ(x)=0必在區(qū)間(e,e2)上有唯一的根,
這個(gè)根就是所求的唯一x0
故結(jié)論成立.

點(diǎn)評(píng) 本題以函數(shù)為載體,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,函數(shù)的單調(diào)性,考查曲線的切線,同時(shí)考查零點(diǎn)存在性定理,綜合性比較強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知z1=x2++2i,z2=-3+4i(x∈R),則|z1+z2|的最小值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.記不等式x2+x-6<0的解集為集合A,函數(shù)f(x)=$\frac{1}{\sqrt{{(lo{g}_{2}x)}^{2}-1}}$定義域?yàn)锽,則A∩B=(  )
A.(0,$\frac{1}{2}$)B.(2,+∞)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中含x2項(xiàng)為( 。
A.0B.-80x2C.80x2D.160x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校為調(diào)查2016屆學(xué)業(yè)水平考試的數(shù)學(xué)成績情況,隨機(jī)抽取2個(gè)班各50名同學(xué),得如下頻率分布表:
分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]
甲班頻數(shù)46101812
乙班頻數(shù)2618168
(Ⅰ)估計(jì)甲,乙兩班的數(shù)學(xué)平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)數(shù)學(xué)成績[60,70)為“C等”,[70,90)為“B等”和[90,100]為“A等”,從兩個(gè)班成績?yōu)椤癆等”的同學(xué)中用分層抽樣的方法抽取5人,則甲乙兩個(gè)班各抽取多少人?
(Ⅲ)從第(Ⅱ)問的5人中隨機(jī)抽取2人,求這2人來自同一班級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,C,D是以AB為直徑的圓上的兩點(diǎn),AB=2AD=2$\sqrt{3}$,AC=BC,F(xiàn)是AB上的一點(diǎn),且AF=$\frac{1}{3}$AB,將圓沿AB折起,使點(diǎn)C在平面ABD的正投影E在線段BD上,已知CE=$\sqrt{2}$,平面EFMN分別交AC、DC于點(diǎn)M、N.
(1)求證:AD⊥平面BCE;
(2)求證:AD∥MN;
(3)求三棱錐A-CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩條直線ax+y-2=0和3x+(a+2)y+1=0互相平行,則實(shí)數(shù)a等于(  )
A.1或-3B.-1或3C.1或3D.-1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了對(duì)某課題進(jìn)行研究,用分層抽樣的方法從三所高校A,B,C的相關(guān)人中抽取若干人組成研究小組,有關(guān)數(shù)據(jù)如下表(單位:人).
高校相關(guān)人數(shù)抽取人數(shù)
A54x
B362
C72y
(1)求x,y;
(2)若從高校B,C抽取的人中選2人作專題發(fā)言,求這2人均來自高校C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{3+{{log}_2}x,x>0}\\{2{x^2}-3x,x≤0}\end{array}}\right.$,則不等式f(x)≤5的解集為(  )
A.[-1,1]B.(-∞,-1]∪(0,1)C.[-1,4]D.(-∞,-1]∪[0,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案