相關(guān)習(xí)題
 0  227846  227854  227860  227864  227870  227872  227876  227882  227884  227890  227896  227900  227902  227906  227912  227914  227920  227924  227926  227930  227932  227936  227938  227940  227941  227942  227944  227945  227946  227948  227950  227954  227956  227960  227962  227966  227972  227974  227980  227984  227986  227990  227996  228002  228004  228010  228014  228016  228022  228026  228032  228040  266669 

科目: 來源: 題型:填空題

18.若(5x+4)10=a0+a1x+…+a9x9+a10x10,則a1-a2+a3-a4+…+a9-a10=410-1.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),則函數(shù)y=log${\;}_{\frac{1}{2}}$f(x)的單調(diào)增區(qū)間是[kπ+$\frac{π}{24}$,kπ+$\frac{7π}{24}$),k∈Z.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)a>0,b>0,且a+b=$\frac{1}{a}+\frac{1}$
(1)證明:a+b≥2;
(2)a2+a≤2,求b2+b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x}+3,}&{x≥0}\\{ax+b,}&{x<0}\end{array}\right.$ 滿足條件,對于?x1∈R,存在唯一的x2∈R,使得f(x1)=f(x2).當(dāng)f(2a)=f(3b)成立時(shí),則實(shí)數(shù)a+b=( 。
A.$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{2}$+3D.-$\frac{\sqrt{6}}{2}$+3

查看答案和解析>>

科目: 來源: 題型:解答題

14.計(jì)算
(1)${∫}_{-3}^{3}$($\sqrt{9-{x}^{2}}$-x3)dx的值.
(2)${∫}_{-3}^{3}$(|x+1|+|x-1|-4)dx;
(3)${∫}_{a}^$$\sqrt{(x-a)(b-x)}$dx(b>a)
(4)${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(sin3xcosx)dx;
(5)${∫}_{1}^{2}$$\frac{1}{x(x+1)}$dx.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知點(diǎn)A(1,0),B(0,1),C(2sin(θ-$\frac{π}{4}$),cos($θ-\frac{π}{4}$)),且|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|.
(1)求tan($θ-\frac{π}{4}$)的值;
(2)若θ-$\frac{π}{4}$∈(0,$\frac{π}{2}$),求cosθ的值.

查看答案和解析>>

科目: 來源: 題型:填空題

12.給出三個(gè)不等式:①x2-y2>0;②x2-y2<0;③x2+y2>0,如圖所示的陰影區(qū)域應(yīng)是序號為②的不等式所表示的平面區(qū)域.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2+x}{x},x<0}\\{lo{g}_{2}\frac{1}{x},x>0}\end{array}\right.$,則f(x)+2≤0的解集為[-$\frac{2}{3}$,0)∪[4,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知sinα-cosα=-$\frac{3\sqrt{2}}{5}$,$\frac{17π}{12}$<α$<\frac{7π}{4}$
(1)求sinαcosα、sinα+cosα的值;
(2)求sin(2α+$\frac{π}{4}$)的值;
(3)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知向量$\overrightarrow{m}$≠0,λ∈R,$\overrightarrow{a}$=$\overrightarrow{m}$+λ$\overrightarrow{n}$,$\overrightarrow$=λ$\overrightarrow{n}$,若向量$\overrightarrow{a}$與$\overrightarrow$共線,則( 。
A.λ=0B.$\overrightarrow{n}$=0C.$\overrightarrow{m}$∥$\overrightarrow{n}$D.λ=0或$\overrightarrow{m}$∥$\overrightarrow{n}$

查看答案和解析>>

同步練習(xí)冊答案