相關(guān)習(xí)題
 0  228066  228074  228080  228084  228090  228092  228096  228102  228104  228110  228116  228120  228122  228126  228132  228134  228140  228144  228146  228150  228152  228156  228158  228160  228161  228162  228164  228165  228166  228168  228170  228174  228176  228180  228182  228186  228192  228194  228200  228204  228206  228210  228216  228222  228224  228230  228234  228236  228242  228246  228252  228260  266669 

科目: 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和Sn=$\frac{1}{7}$(23n+1-2)
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,求$\frac{1}{_{1}_{2}}$$+\frac{1}{b{{\;}_{2}b}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊.
(1)若△ABC的周長為$\sqrt{2}$+1,且sinA+sinB=$\sqrt{2}$sinC,求邊AB的長;
(2)若a=ccosB,且b=csinA.試判斷△ABC的形狀.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}是等比數(shù)列,其前n項和為Sn,滿足S2+a1=0,a3=12.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)n,使得Sn>2010?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.己知$\overrightarrow{a}$=(sinx,cos2x-sin2x),$\overrightarrow$=(cosx,$\frac{\sqrt{3}}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.等比數(shù)列{an}中,a2-a1=2,且2a2為3a1和a3的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2log3an+1,且數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項和為Tn.求Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設(shè)m∈R,函數(shù)f(x)=(x-m)2+(e2x-2m)2,若存在x0使得f(x0)≤$\frac{1}{5}$成立,則m=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

8.半徑為$\frac{2\sqrt{3}}{3}$的圓內(nèi)接三角形ABC,∠A=60°,則△ABC周長的最大值為6.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知點A(1,1),點B(-2,5),則與$\overrightarrow{AB}$同方向的單位向量為$(-\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.函數(shù)f(x)是定義在R上的奇函數(shù),且f(x-1)為偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三個零點,則實數(shù)b的取值范圍是( 。
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

同步練習(xí)冊答案