相關(guān)習(xí)題
 0  228705  228713  228719  228723  228729  228731  228735  228741  228743  228749  228755  228759  228761  228765  228771  228773  228779  228783  228785  228789  228791  228795  228797  228799  228800  228801  228803  228804  228805  228807  228809  228813  228815  228819  228821  228825  228831  228833  228839  228843  228845  228849  228855  228861  228863  228869  228873  228875  228881  228885  228891  228899  266669 

科目: 來源: 題型:選擇題

15.如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)圖象的一部分,為了得到這個(gè)函數(shù)的圖象,只要將y=sinx的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{8}$個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B.向右平移$\frac{π}{8}$個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變
C.向左平移$\frac{π}{4}$個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變
D.向右平移$\frac{π}{4}$個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知1≤x≤100,xy2=100,u=(lgx)2+a(lgy)2(a是常數(shù),a∈R)
①寫出u關(guān)于y的函數(shù)解析式.
②求u的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.求f(x)=$\frac{1}{3}$x3-4x+4在[0,6]的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

12.設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z$,i為虛數(shù)單位,已知(3-4i)$\overline z$=1+2i,則z=$-\frac{1}{5}-\frac{2}{5}i$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a2=4,S5=30,數(shù)列{bn}滿足b1+2b2+…+nbn=an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:b1b2+b2b3+…+bnbn+1<4.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一個(gè)周期的圖象如圖所示,則(  )
A.A=2,ω=2,φ=$\frac{3π}{4}$B.A=2,ω=2,φ=$\frac{5π}{4}$C.A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$D.A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知集合M={x|3x-x2>0},N={x|x2-4x+3>0},則M∩N=(  )
A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在四邊形ABCD中,CB=CA=$\frac{1}{2}$AD=1,$\overrightarrow{CA}•\overrightarrow{AD}$=-1,sin∠BCD=$\frac{3}{5}$.
(1)求證:AC⊥CD;
(2)求四邊形ABCD的面積;
(3)求sinB的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知函數(shù)y=f(log2x)的定義域?yàn)閇1,2],那么函數(shù)y=f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.[2,4]B.[1,2]C.[0,1]D.(0,1]

查看答案和解析>>

科目: 來源: 題型:解答題

6.若a,b∈(0,+∞)且a+b=3,求$\sqrt{1+a}$+$\sqrt{1+b}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案