相關習題
 0  228868  228876  228882  228886  228892  228894  228898  228904  228906  228912  228918  228922  228924  228928  228934  228936  228942  228946  228948  228952  228954  228958  228960  228962  228963  228964  228966  228967  228968  228970  228972  228976  228978  228982  228984  228988  228994  228996  229002  229006  229008  229012  229018  229024  229026  229032  229036  229038  229044  229048  229054  229062  266669 

科目: 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=-x+3與橢圓E有且只有一個公共點T.
(Ⅰ)求橢圓E的方程及點T的坐標;
(Ⅱ)設O是坐標原點,直線l′平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數(shù)λ,使得|PT|2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N*
(Ⅰ)若2a2,a3,a2+2成等差數(shù)列,求an的通項公式;
(Ⅱ)設雙曲線x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1的離心率為en,且e2=$\frac{5}{3}$,證明:e1+e2+???+en>$\frac{{4}^{n}-{3}^{n}}{{3}^{n-1}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.設函數(shù)f(x)=ax2-a-lnx,g(x)=$\frac{1}{x}$-$\frac{e}{{e}^{x}}$,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(Ⅰ)討論f(x)的單調性;
(Ⅱ)證明:當x>1時,g(x)>0;
(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內恒成立.

查看答案和解析>>

科目: 來源: 題型:解答題

20.平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,拋物線E:x2=2y的焦點F是C的一個頂點.
(I)求橢圓C的方程;
(Ⅱ)設P是E上的動點,且位于第一象限,E在點P處的切線l與C交于不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線l與y軸交于點G,記△PFG的面積為S1,△PDM的面積為S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$,a∈R.
(I)討論f(x)的單調性;
(II)當a=1時,證明f(x)>f′(x)+$\frac{3}{2}$對于任意的x∈[1,2]成立.

查看答案和解析>>

科目: 來源: 題型:解答題

18.設函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)設a=b=4,若函數(shù)f(x)有三個不同零點,求c的取值范圍;
(3)求證:a2-3b>0是f(x)有三個不同零點的必要而不充分條件.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4
(1)求{an}的通項公式;
(2)設cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目: 來源: 題型:填空題

16.某網(wǎng)店統(tǒng)計了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店
①第一天售出但第二天未售出的商品有16種;
②這三天售出的商品最少有29種.

查看答案和解析>>

科目: 來源: 題型:填空題

15.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,則$\frac{c}$=1.

查看答案和解析>>

同步練習冊答案