相關(guān)習(xí)題
 0  229024  229032  229038  229042  229048  229050  229054  229060  229062  229068  229074  229078  229080  229084  229090  229092  229098  229102  229104  229108  229110  229114  229116  229118  229119  229120  229122  229123  229124  229126  229128  229132  229134  229138  229140  229144  229150  229152  229158  229162  229164  229168  229174  229180  229182  229188  229192  229194  229200  229204  229210  229218  266669 

科目: 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+
(1)求a2,a3,a4,a5;
(2)歸納猜想出通項(xiàng)公式an,并且用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知a1=$\frac{1}{2},{a_{n+1}}=\frac{a_n}{{1+2{a_n}}}$(n∈N*
(1)求a2,a3,a4并由此猜想數(shù)列{an}的通項(xiàng)公式an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球?yàn)閮纱稳∏颍┑某晒θ》ù螖?shù)為隨機(jī)變量X,求X的分布列.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$).
(1)試求a1、a2、a3;
(2)猜想通項(xiàng)an,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知x,y滿足x2+y2=1,求證:|ax+by|≤$\sqrt{{a}^{2}+^{2}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知:x,y,z∈R+且$\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$=1,求證:$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$≥1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.求證:$\frac{n}{{2}^{n}}$<$\frac{2}{n-1}$(n≥2,n∈N)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知a>b>0,求證:$\frac{a-b}{a+b}$+$\frac{2^{2}}{{a}^{2}+^{2}}$<1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,四邊形ABCD為矩形,A(1,0),B(2,0),C(2,$\sqrt{6}$),又A1(-1,0).點(diǎn)M在直線CD上,點(diǎn)N在直線BC上,且$\overrightarrow{DM}$=λ$\overrightarrow{DC}$,$\overrightarrow{BN}$=λ$\overrightarrow{BC}$(λ∈R).
(1)求直線AM與A1N的交點(diǎn)Q的軌跡S的方程;
(2)過點(diǎn)P(1,1)能否作一條直線l,與曲線S交于E、F兩點(diǎn),且點(diǎn)P是線段EF的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案